We report on a novel strategy for identification of specific sulfation motifs in chondroitin/dermatan sulfate (CS/DS) chain derived from decorin (Dcn), based on enzyme cleavage and multistage MS (MS(n)). Released CS/DS chains were digested with chondroitin B and in parallel with AC I lyases to obtain oligosaccharides of known hexuronic acid (HexA) epimerization. The depolymerized chains were separated by gel filtration, and collected di- and hexasaccharides were analyzed by ESI MS(n). MS(2) on bisulfated 4,5-Delta-HexAGalNAc revealed an additional sulfate ester group at 4,5-Delta-HexA. MS(2) data provided evidence upon GlcA sulfation in Dcn due to the fact that 4,5-Delta-HexA derived from GlcA after chondroitin AC I lyase treatment. Hexasaccharide screening in the MS(1) mode indicated direct correlation between the sulfate distribution and HexA epimerization. MS(n) performed on ions that, according to mass calculation, correspond to pentasulfated [4,5-Delta-HexAGalNAc(GlcAGalNAc)(2)], trisulfated [4,5-Delta-HexAGalNAc(GlcAGalNAc)(2)] with IdoA-derived 4,5-Delta-HexA at the nonreducing end, tetrasulfated [4,5-Delta-HexAGalNAc(IdoAGalNAc)(2)] and monosulfated [4,5-Delta-HexAGalNAc(IdoAGalNAc)(2)] with GlcA-derived 4,5-Delta-HexA at the nonreducing end rendered fragmentation patterns confirming the presence of over-, regular, and under-sulfated regions as well as structural motifs having both types of HexA sulfated within Dcn CS/DS.
Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an agematched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced Nacetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di-O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono-to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collisioninduced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.
Gangliosides, sialic-acid-containing glycosphingolipids are involved in numerous biological processes and play essential roles in severe pathologies, with predilection in those of the central nervous system. Formerly, ganglioside composition and quantity were assessed exclusively by thin-layer chromatographic (TLC), immunochemical, and immunohistochemical methods, which have limited effectiveness being unable to detect minor components in mixtures of high heterogeneity. Increased awareness of the biological importance of gangliosides stimulated the development of analytical methods that are better amenable to complex ganglioside mixtures. More recently, MS in online conjunction with high-performance separation techniques brought a significant progress to the field. This review highlights the state-of-the-art development and application of separation methods online coupled to MS for ganglioside analysis. Most original and successful protocols based on GC-MS, LC-MS, and CE-MS are presented here together with the special instrumental and sample preparation requirements to be met for effective ganglioside separation, detection, and structural identification. Finally, the advantages and downsides of each methodology as well as the perspectives for simplification, standardization, and upgrading are assessed.
Chondroitin sulfate (CS) and dermatan sulfate (DS) are special types of glycosaminoglycan (GAG) oligosaccharides able to regulate vital biological functions that depend on precise motifs of their constituent hexose sequences and the extent and location of their sulfation. As a result, the need for better understanding of CS/DS biological role called for the elaboration and application of straightforward strategies for their composition and structure elucidation. Due to its high sensitivity, reproducibility, and the possibility to rapidly generate data on fine CS/DS structure determinants, mass spectrometry (MS) based on either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) brought a major progress in the field. Here, modern developments in MS of CS/DS GAGs are gathered in a critical review covering the past 5 years. The first section is dedicated to protocols for CS/DS extraction from parent proteoglycan, digestion, and purification that are among critical prerequisites of a successful MS experiment. The second part highlights several MALDI MS aspects, the requirements, and applications of this ionization method to CS/DS investigation. An ample chapter is devoted to ESI MS strategies, which employ either capillary- or advanced chip-based sample infusion in combination with multistage MS (MS(n)) using either collision-induced (CID) or electron detachment dissociation (EDD). At last, the potential of two versatile separation techniques, capillary electrophoresis (CE), and liquid chromatography (LC) in off- and/or on-line coupling with ESI MS and MS(n), is discussed, alongside an assessment of particular buffer/solvent conditions and instrumental parameters required for CS/DS mixture separation followed by on-line mass analysis of individual components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.