The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.
The development of sensitive nucleic acid stains, in combination with flow cytometric techniques, has allowed the identification and enumeration of viruses in aquatic systems. However, the methods used in flow cytometric analyses of viruses have not been consistent to date. A detailed evaluation of a broad range of sample preparations to optimize counts and to promote the consistency of methods used is presented here. The types and concentrations of dyes, fixatives, dilution media, and additives, as well as temperature and length of incubation, dilution factor, and storage conditions were tested. A variety of different viruses, including representatives of phytoplankton viruses, cyanobacteriophages, coliphages, marine bacteriophages, and natural mixed marine virus communities were examined. The conditions that produced optimal counting results were fixation with glutaraldehyde (0.5% final concentration, 15 to 30 min), freezing in liquid nitrogen, and storage at ؊80°C. Upon thawing, samples should be diluted in Tris-EDTA buffer (pH 8), stained with SYBR Green I (a 5 ؋ 10 ؊5 dilution of commercial stock), incubated for 10 min in the dark at 80°C, and cooled for 5 min prior to analysis. The results from examinations of storage conditions clearly demonstrated the importance of low storage temperatures (at least ؊80°C) to prevent strong decreases (occasionally 50 to 80% of the total) in measured total virus abundance with time.It has been well established that viruses are abundant and important components in aquatic ecosystems (1,18,32,41,44) since they have been shown to be a major source of mortality for bacteria and eukaryotes (4,6,31,36,38,40). Because of their relatively short infection cycles, virus populations are highly dynamic and result in rapid changes in both total numerical abundance and diversity (5, 11, 13-15, 24, 33-35, 37, 43, 45). Assays for rapidly counting viruses with high precision are, therefore, beneficial for studies of viral ecology in the laboratory as well as the field.Viruses have traditionally been enumerated by culturebased methods (e.g., plaque counts and most-probable-number assays) and transmission electron microscopy (1,3,15,39). These techniques were either selective for viruses infectious for a specific host or very time-consuming. The introduction of high-fluorescence-yield nucleic-acid-specific stains in combination with epifluorescence microscopy (19,20,30) significantly improved the quantitation of viruses. With the recent introduction of flow cytometric detection and enumeration of free viruses (7,27,29), speed of analysis and accuracy of counting was further improved. This method no longer relies on the skills of the operator. Direct comparison showed that epifluorescence-and flow cytometry-based virus counts were highly comparable (27). Brussaard et al. (7) have shown that a variety of viruses of different morphologies and genome sizes could be detected by flow cytometry. In combination with SYBR Green I as the fluorescent stain, flow cytometry has been used successfully t...
Flow cytometry (FCM) was successfully used to enumerate viruses in seawater after staining with the nucleic acid-specific dye SYBR Green-I. The technique was first optimized by using thePhaeocystis lytic virus PpV-01. Then it was used to analyze natural samples from different oceanic locations. Virus samples were fixed with 0.5% glutaraldehyde and deep frozen for delayed analysis. The samples were then diluted in Tris-EDTA buffer and analyzed in the presence of SYBR Green-I. A duplicate sample was heated at 80°C in the presence of detergent before analysis. Virus counts obtained by FCM were highly correlated to, although slightly higher than, those obtained by epifluorescence microscopy or by transmission electron microscopy (r = 0.937, n = 14, andr = 0.96, n = 8, respectively). Analysis of a depth profile from the Mediterranean Sea revealed that the abundance of viruses displayed the same vertical trend as that of planktonic cells. FCM permits us to distinguish between at least two and sometimes three virus populations in natural samples. Because of its speed and accuracy, FCM should prove very useful for studies of virus infection in cultures and should allow us to better understand the structure and dynamics of virus populations in natural waters.
Phytoplankton population dynamics are the result of imbalances between reproduction and losses. Losses include grazing, sinking, and natural mortality. As the importance of microbes in aquatic ecology has been recognized, so has the potential significance of viruses as mortality agents for phytoplankton. The field of algal virus ecology is steadily changing and advancing as new viruses are isolated and new methods are developed for quantifying the impact of viruses on phytoplankton dynamics and diversity. With this development, evidence is accumulating that viruses can control phytoplankton dynamics through reduction of host populations, or by preventing algal host populations from reaching high levels. The identification of highly specific host ranges of viruses is changing our understanding of population dynamics. Viral-mediated mortality may not only affect algal species succession, but may also affect intraspecies succession. Through cellular lysis, viruses indirectly affect the fluxes of energy, nutrients, and organic matter, especially during algal bloom events when biomass is high. Although the importance of viruses is presently recognized, it is apparent that many aspects of viral-mediated mortality of phytoplankton are still poorly understood. It is imperative that future research addresses the mechanisms that regulate virus infectivity, host resistance, genotype richness, abundance, and the fate of viruses over time and space.
For many years, a small but dedicated group of scientists have been using flow cytometry for the evaluation of marine microorganisms. One of these scientists now provides us with a detailed series of protocols in this area, spelling out the variations in method and instrument operation that are crucial to the successful extraction of quality flow data from marine organisms. In addition, the use of a number of less frequently employed fluorescent probes gives some insight into alternative staining procedures. As our collection of microbiologically oriented techniques increases, this knowledge database becomes invaluable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.