Abstract. Peat decomposition in managed peatlands is responsible for a decrease of 0.52 GtC yr−1 in global carbon stock and is strongly linked to drainage to improve the agricultural bearing capacity, which increases aeration of the soil. Microbial aerobic decomposition is responsible for the bulk of the net CO2 emission from the soil and could be reduced by wetting efforts or minimizing drainage. However, the effects of rewetting efforts on microbial respiration rate are largely unknown. In this study, we aimed to obtain more process-based understanding of these rewetting effects on peat decomposition by integrating high-quality field measurements and literature relationships with an advanced hydrological modelling approach where soil moisture and temperature are centralized as the main drivers for peat decomposition. In 2020 and 2021, two dairy farming peatlands, where subsoil irrigation and drainage (SSI) was tested against a control situation, were continuously monitored for CO2 fluxes, groundwater table, soil moisture and soil temperature. After successfully representing field hydrology and carbon dynamic measurements within our process-based model, we further explored the effects of rewetting under different weather conditions, water management strategies (raising ditchwater levels and SSI) and hydrological seepage settings. To represent peat carbon dynamics we introduced a methodology to estimate potential aerobic microbial respiration rate, based on potential respiration rate curves for soil temperature and water-filled pore space (WFPS). Measurements show that rewetting with SSI resulted in higher summer groundwater levels, soil temperatures and WFPS. SSI reduced the net ecosystem carbon balance (NECB) by 1.58 ± 0.56 kg CO2 m−2 yr−1 (83 ± 25 %) and 0.66 ± 0.62 kg CO2 m−2 yr−1 (28 ± 15 %) for Assendelft and Vlist respectively in 2020. SSI had a negligible effect in 2021 for both research locations, due to more precipitation, lower temperatures and different SSI management (in Assendelft) as compared to 2020. Simulated rewetting effects were in agreement with measured rewetting effects. Model simulations indicate that raising ditchwater levels always reduces peat respiration rates. Furthermore, we found that the application of SSI (i) reduces yearly peat respiration rates in a dry year and/or with downward hydrological fluxes and (ii) increases peat respiration rates in a wet year and/or when upward groundwater seepage is present. Moreover, combining SSI with high ditchwater levels or pressurizing SSI systems will further reduce peat respiration rates. We show that our process-based approach based on temperature and WFPS soil conditions to determine NECB represents observed variance to a greater extent than empirical relationships that involve average groundwater level observations or simulations. Therefore, we recommend using this kind of approach to estimate the effectiveness of rewetting. When this is not possible, we recommend using mean summer groundwater level instead of mean annual groundwater level as a proxy to estimate NECB. Such relations between mean groundwater levels and NECB are prone to underestimating NECB for SSI parcels.
Abstract. Peat decomposition in managed peatlands is responsible for a decrease of 0.52 GtC yr−1 in global carbon stock and is strongly linked to drainage to improve the agricultural bearing capacity, which increases aeration of the soil. Microbial aerobic decomposition is responsible for the bulk of the net CO2 emission from the soil and could be reduced by wetting efforts or minimizing drainage. However, the effects of rewetting efforts on microbial respiration rate are largely unknown. We aimed to obtain more insight in these rewetting effects and measured them for 1 year for two dairy farming peatlands where submerged drainage subsurface irrigation (SDSI) was tested against a control situation. With a modelling approach, we explored the effects of rewetting under different weather conditions, water management strategies (raising ditch water levels and SDSI) and hydrological settings. We introduced a methodology to estimate potential aerobic microbial respiration rate as measure for peat decomposition in managed peatlands, based on potential respiration rate curves for soil temperature and water filled pore space (WFPS). Rewetting with SDSI resulted in higher summer groundwater levels, soil temperatures and WFPS. SDSI reduced net ecosystem production (NEP) with 1.27 ± 0.39 kg CO2 m−2 yr−1 (83 %) and 0.78 ± 0.37 kg CO2 m−2 yr−1 (35 %) for Assendelft and Vlist respectively. With the process based modelling approach we found that raising ditch water levels always reduces peat respiration rates. Furthermore, we found that the application of SDSI reduces yearly peat respiration rates in environments in a dry year and/or with downward hydrological fluxes, and increases peat respiration rates in a wet year and/or when upward groundwater fluxes are present. Moreover, combining SDSI with high ditch water levels or pressurizing SDSI systems will further reduce peat respiration rates. We highly recommend to use a process-based approach based on temperature and WFPS soil conditions to determine effectivities of rewetting efforts over empirical relationships between average groundwater level and NEP. Such a more process based approach allows to distinguish between groundwater levels raised by SDSI and ditch water levels. When this is not possible, we recommend using mean summer groundwater level instead of mean annual groundwater level as a proxy to estimate NEP. Such relations between mean groundwater levels and NEP need to be corrected for situations with SDSI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.