Acute infusion of a sodium lactate-based hyperosmolar solution is effective in treating intracranial hypertension following traumatic brain injury. This effect is significantly more pronounced than that of an equivalent osmotic load of mannitol. Additionally, in this specific group of patients, long-term outcome was better in terms of GOS in those receiving as compared to mannitol. Larger trials are warranted to confirm our findings.
BackgroundAntioxidant donor pretreatment is one of the pharmacologic strategy proposed to prevent renal ischemia-reperfusion injuries and delayed graft function (DGF). The aim of the study was to investigate whether a donor pretreatment with N-acetylcysteine (NAC) reduces the incidence of DGF in adult human kidney transplant recipients.MethodsIn this randomized, open-label, monocenter trial, 160 deceased heart-beating donors were allowed to perform 236 renal transplantations from September 2005 to December 2010. Donors were randomized to receive, in a single-blind controlled fashion, 600 mg of intravenous NAC 1 hr before and 2 hr after cerebral angiography performed to confirm brain death. Primary endpoint was DGF defined by the need for at least one dialysis session within the first week or a serum creatinine level greater than 200 μmol/L at day 7 after kidney transplantation.ResultsThe incidence of DGF was similar between donors pretreated with or without NAC (39/118; 33% vs. 30/118; 25.4%; P = 0.19). Requirement for at least one dialysis session was not different between the NAC and No NAC groups (17/118; 14.4% vs. 14/118; 11.8%, P = 0.56). The two groups had comparable serum creatinine levels, estimated glomerular filtration rates, and daily urine output at days 1, 7, 15, and 30 after kidney transplantation as well as at hospital discharge. No difference in recipient mortality nor in 1-year kidney graft survival was observed.ConclusionDonor pretreatment with NAC does not improve delayed graft function after kidney transplantation.
Dopamine is widely used to improve systemic and hepatosplanchnic hemodynamics and oxygenation during sepsis. However, some studies have suggest that norepinephrine may have beneficial effects on regional blood flow and metabolism, whereas dopamine might have deleterious effects related to redistribution of blood flow away from the intestinal mucosa or by decreasing directly the cell redox state. In 12 vasoplegic septic patients, we compared the effects of norepinephrine and dopamine on systemic and hepatosplanchnic hemodynamics, oxygenation, and energy metabolism. Catecholamines were administered in a crossover randomized order to maintain mean arterial pressure (MAP) at 80 mmHg. Hepatosplanchnic blood flow (Qspl) was determined using a continuous infusion of indocyanine green dye. Despite a similar MAP, the cardiac index was higher with dopamine than with norepinephrine (6.3 [5.3-7.3] vs. 4.3 [3.8-4.9] L.min.m) (P <0.001). Qspl was similar with both catecholamines, but the ratio of Qspl to cardiac output was significantly lower with dopamine (23.9% [17.5-33.5]) than with norepinephrine (33.5% [25.8-37]) (P <0.05). Although global O2 delivery and O2 consumption were higher with dopamine (782 [707-859] vs. 553 [512-629] mL.min.m, P <0.001 and 164 [134-192] vs. 128 [111-149] mL.min.m, P <0.001, respectively), hepatosplanchnic O2 delivery and consumption were not different. Hepatic lactate uptake was lower (0.47 [0.3-0.89] vs. 1.01 [0.69-1.34] mmol.min) (P <0.01), and hepatic venous lactate-to-pyruvate ratio was higher (15.3 [7.6-21.1] vs. 11.2 [6.6-15.1], P <0.05) with dopamine than with norepinephrine. In vasoplegic septic patients, maintaining mean arterial pressure, hepatosplanchnic hemodynamics, and oxygen exchange with dopamine requires a consequent increased cardiac output, which is responsible for an increased global oxygen demand when compared with norepinephrine. In addition, dopamine impairs the hepatic energy balance. Its position as a preferential treatment compared with norepinephrine in this context may therefore be questionable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.