This study analyzes the local deformation behavior of austenitic stainless steel 316L, manufactured conventionally by casting and additively by laser metal deposition (LMD). We produced directionally solidified 316L specimens with most grains showing (001) orientations parallel to the longitudinal specimen axis. We conducted nanoindentation and scratch experiments for local mechanical characterization and topography measurements (atomic force microscopy and confocal laser scanning microscopy) of indentation imprints and residual scratch grooves for the analysis of the deformation behavior and, in particular, of the pile-up behavior. The local mechanical properties and deformation behavior were correlated to the local microstructure investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy and electron backscatter diffraction analysis. The results show that the local mechanical properties, deformation behavior, and scratch resistance strongly depend on the crystallographic orientation. Nearly (001)-oriented grains parallel to the surface show the lowest hardness, followed by an increasing hardness of nearly (101)- and (111)-oriented grains. Consequently, scratch depth is the greatest for nearly (001)-oriented grains followed by (101) and (111) orientations. This tendency is seen independently of the analyzed manufacturing route, namely Bridgman solidification and laser metal deposition. In general, the laser metal deposition process leads to a higher strength and hardness, which is mainly attributed to a higher dislocation density. Under the investigated loading conditions, the cellular segregation substructure is not found to significantly and directly change the local deformation behavior during indentation and scratch testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.