The dynamic interactions between a host and its intestinal microflora that lead to commensalism are unclear. Bacteria that colonize the intestinal tract do so despite the development of a specific immune response by the host. The mechanisms used by commensal organisms to circumvent this immune response have yet to be established. Here we demonstrate that the human colonic microorganism, Bacteroides fragilis, is able to modulate its surface antigenicity by producing at least eight distinct capsular polysaccharides-a number greater than any previously reported for a bacterium-and is able to regulate their expression in an on-off manner by the reversible inversion of DNA segments containing the promoters for their expression. This means of generating surface diversity allows the organism to exhibit a wide array of distinct surface polysaccharide combinations, and may have broad implications for how the predominant human colonic microorganisms, the Bacteroides species, maintain an ecological niche in the intestinal tract.
The mammalian gut represents a complex and diverse ecosystem, consisting of unique interactions between the host and microbial residents. Bacterial surfaces serve as an interface that promotes and responds to this dynamic exchange, a process essential to the biology of both symbionts. The human intestinal microorganism, Bacteroides fragilis, is able to extensively modulate its surface. Analysis of the B. fragilis genomic sequence, together with genetic conservation analyses, cross-species cloning experiments, and mutational studies, revealed that this organism utilizes an endogenous DNA inversion factor to globally modulate the expression of its surface structures. This DNA invertase is necessary for the inversion of at least 13 regions located throughout the genome, including the promoter regions for seven of the capsular polysaccharide biosynthesis loci, an accessory polysaccharide biosynthesis locus, and five other regions containing consensus promoter sequences. Bacterial DNA invertases of the serine site-specific recombinase family are typically encoded by imported elements such as phage and plasmids, and act locally on a single region of the imported element. In contrast, the conservation and unique global regulatory nature of the process in B. fragilis suggest an evolutionarily ancient mechanism for surface adaptation to the changing intestinal milieu during commensalism.
SummaryThe chromosome of Bacteroides fragilis has been shown to undergo 13 distinct DNA inversions affecting the expression of capsular polysaccharides and mediated by a serine site-specific recombinase designated Mpi. In this study, we demonstrate that members of the tyrosine site-specific recombinase family, conserved in B. fragilis , mediate additional DNA inversions of the B. fragilis genome. These DNA invertases flip promoter regions in their immediate downstream region. The genetic organization of the genes regulated by these invertible promoter regions suggests that they are operons and many of the products are predicted to be outer membrane proteins. Phenotypic analysis of a deletion mutant of one of these DNA invertases, tsr15 ( aapI ), which resulted in the promoter region for the downstream genes being locked ON, confirmed the synthesis of multiple surface proteins by this operon. In addition, this deletion mutant demonstrated an autoaggregative phenotype and showed significantly greater adherence than wildtype organisms in a biofilm assay, suggesting a possible functional role for these phase-variable outer surface proteins. This study demonstrates that DNA inversion is a universal mechanism used by this commensal microorganism to phase vary expression of its surface molecules and involves at least three conserved DNA invertases from two evolutionarily distinct families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.