Background and purposeRectal toxicity presents a significant limiting factor in prostate radiotherapy regimens. This study evaluated the safety and efficacy of an implantable and biodegradable balloon specifically designed to protect rectal tissue during radiotherapy by increasing the prostate–rectum interspace.Patients and methodsBalloons were transperineally implanted, under transrectal ultrasound guidance, into the prostate–rectum interspace in 27 patients with localized prostate cancer scheduled to undergo radiotherapy. Patients underwent two simulations for radiotherapy planning--the first simulation before implant, and the second simulation seven days post implant. The balloon position, the dimensions of the prostate, and the distance between the prostate and rectum were evaluated by CT/US examinations 1 week after the implant, weekly during the radiotherapy period, and at 3 and 6 months post implant. Dose-volume histograms of pre and post implantation were compared. Adverse events were recorded throughout the study period.ResultsFour of 27 patients were excluded from the evaluation. One was excluded due to a technical failure during implant, and three patients were excluded because the balloon prematurely deflated. The balloon status was evaluated for the duration of the radiotherapy period in 23 patients. With the balloon implant, the distance between the prostate and rectum increased 10-fold, from a mean 0.22 ± 0.2 cm to 2.47 ± 0.47 cm. During the radiotherapy period the balloon length changed from 4.25 ± 0.49 cm to 3.81 ± 0.84 cm and the balloon height from 1.86 ± 0.24 cm to 1.67 ± 0.22 cm. But the prostate-rectum interspace distance remained constant from beginning to end of radiotherapy: 2.47 ± 0.47 cm and 2.41 ± 0.43 cm, respectively. A significant mean reduction in calculated rectal radiation exposure was achieved. The implant procedure was well tolerated. The adverse events included mild pain at the perineal skin and in the anus. Three patients experienced acute urinary retention which resolved in a few hours following conservative treatment. No infections or thromboembolic events occurred during the implant procedure or during the radiotherapy period.ConclusionThe transperineal implantation of the biodegradable balloon in patients scheduled to receive radiotherapy was safe and achieved a significant and constant gap between the prostate and rectum. This separation resulted in an important reduction in the rectal radiation dose. A prospective study to evaluate the acute and late rectal toxicity is needed.
Recurrent neck metastases following surgery and full dose adjuvant radiotherapy of squamous cell head and neck cancer remain a clinical challenge. After revision neck dissection and chemotherapy re-irradiation dosage is often limited and survival prognosis deteriorates. Here, adjuvant high-dose rate intensity modulated perioperative brachytherapy (HDR IMBT) offers a second full radiation dose with a limited volume of normal tissue radiation in the neck. In this retrospective study patients were identified who underwent revision surgery and perioperative HDR IMBT for recurrent neck metastases. Survival rates were estimated and the scarce literature on interstitial brachytherapy of the neck was reviewed. From 2006 to 2014, nine patients were treated for recurrent or palliative neck metastases using salvage surgery and HDR IMBT. Eight patients received previous surgery and external beam radiotherapy with or without chemotherapy. Two and five year overall survival was calculated to be 78 and 67 %, respectively. HDR IMBT is a salvage treatment option for selected cases in the neck following surgical revision or last-line treatment strategies. In the literature and this small cohort radiation toxicity and the risk of "carotid blow-out" seemed to be low.
PurposeThis study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer.Material and methodsWe analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms.ResultsThere was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01).ConclusionsCompared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer.
PurposeBrachytherapy procedure may result in acute tissue reactions like edema, causing deviations between planned and measured doses. The rationale for in vivo dosimetry in interstitial brachytherapy is to assess the accuracy of the delivered dose in comparison with the dose calculated by the treatment planning system (TPS).Material and methodsOne single computer tomography (CT) dataset was used for brachytherapy planning, taken within 24 hours after implantation. In vivo interstitial measurements with micro-MOSFET-detectors (metal oxide semiconductor field effect transistor) were performed in 12 patients with different anatomic locations of cancers, including thorax-wall, head and neck, breast, and different types of implantations (monoplanar, loops, and multiplanar).ResultsMeasured values for the thorax-wall tumor patient showed a good agreement with the calculated data, with average deviation of –2.7% in 8 mm distance to the closest dwell position of the source. The deviation of the measured dose value of the head and neck patient was +55.6% in the first fraction and +8.5% in the last fraction. In the ten breast cancer patients, measured doses depended on the proximity of the detector to the irradiated volume PTV.ConclusionsThe deviations between planned and measured dose values were markedly influenced by the proximity of the detector to the PTV because where the edema exerts, the greatest influence on the tube applicator geometry. The positioning of the patient during irradiation must correspond to the positioning in the planning CT. Further studies are needed to investigate the role of in vivo dosimetry during interstitial brachytherapy as a routine procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.