Aim To analyse the conservation status of tropical dry forests at the global scale, by combining a newly developed global distribution map with spatial data describing different threats, and to identify the relative exposure of different forest areas to such threats.Location Global assessment.Methods We present a new global distribution map of tropical dry forest derived from the recently developed MODIS Vegetation Continuous Fields (VCF) product, which depicts percentage tree cover at a resolution of 500 m, combined with previously defined maps of biomes. This distribution map was overlaid with spatial data to estimate the exposure of tropical dry forests to a number of different threats: climate change, habitat fragmentation, fire, human population density and conversion to cropland. The extent of tropical dry forest currently protected was estimated by overlaying the forest map with a global data set of the distribution of protected areas.
To meet the ambitious objectives of biodiversity and climate conventions, countries and the international community require clarity on how these objectives can be operationalized spatially, and multiple targets be pursued concurrently 1 . To support governments and political conventions, spatial guidance is needed to identify which areas should be managed for conservation to generate the greatest synergies between biodiversity and nature's contribution to people (NCP). Here we present results from a joint optimization that maximizes improvements in species conservation status, carbon retention and water provisioning and rank terrestrial conservation priorities globally. We found that, selecting the top-ranked 30% (respectively 50%) of areas would conserve 62.4% (86.8%) of the estimated total carbon stock and 67.8% (90.7%) of all clean water provisioning, in addition to improving the conservation status for 69.7% (83.8%) of all species considered. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to improve the conservation status of 86.3% of plant and vertebrate species on Earth. Our results provide a global baseline on where land could be managed for conservation. We discuss how such a spatial prioritisation framework can support the implementation of the biodiversity and climate conventions.
Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major challenge for understanding, mapping and communicating where and how biodiversity benefits coincide with climate benefits. A new integrated approach to biodiversity is therefore needed. Here, we (a) present a new high-resolution map of global above- and below-ground carbon stored in biomass and soil, (b) quantify biodiversity values using two complementary indices (BIp and BIr) representing proactive and reactive approaches to conservation, and (c) examine patterns of carbon–biodiversity overlap by identifying 'hotspots' (20% highest values for both aspects). Our indices integrate local diversity and ecosystem intactness, as well as regional ecosystem intactness across the broader area supporting a similar natural assemblage of species to the location of interest. The western Amazon Basin, Central Africa and Southeast Asia capture the last strongholds of highest local biodiversity and ecosystem intactness worldwide, while the last refuges for unique biological communities whose habitats have been greatly reduced are mostly found in the tropical Andes and central Sundaland. There is 38 and 5% overlap in carbon and biodiversity hotspots, for proactive and reactive conservation, respectively. Alarmingly, only around 12 and 21% of these proactive and reactive hotspot areas, respectively, are formally protected. This highlights that a coupled approach is urgently needed to help achieve both climate and biodiversity global targets. This would involve (1) restoring and conserving unprotected, degraded ecosystems, particularly in the Neotropics and Indomalaya, and (2) retaining the remaining strongholds of intactness. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
Summary 1.A reduction in forest area should result in a reduction of its number of species and, moreover, do so in a characteristic way according to the familiar species-area relationship. Brooks, Pimm & Collar (1997) applied this formula to the losses in forest area in the Philippines and Indonesia. Independently derived totals of the number of endemic bird species that are threatened with extinction broadly agree with these predicted losses. In some cases, however, predicted losses overestimate or underestimate the actual numbers of threatened species. 2. Within an island, the proportionate deforestation to date might be most extensive where there are many endemic species, or where there are few. To test this possibility, we obtained recent forest cover data for the region. We separated lowland (< 1000 m a.s.l.) from montane (> 1000 m a.s.l.) forest cover by overlaying topographic maps. From these data, we predict separately the numbers of montane and lowland endemic bird species likely to become extinct as a result of deforestation. We then compared these totals with the numbers considered threatened in the latest Red List. 3. Our predictions based on deforestation closely match the numbers of threatened endemic birds in the lowlands, but underestimate them in montane regions. 4. Our predictions based on deforestation underestimate the number of threatened montane mammal species even more seriously. 5. Lowland faunas of insular South-east Asia are under extreme threat because of massive deforestation. The region's montane faunas appear seriously threatened even by low levels of deforestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.