Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named ‘cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.
Most cell free protein synthesis systems are based on cell extracts, which often contain undesirable activities. The reconstituted systems, by contrast, are composed of a defined number of purified and recombinant components with minimal nuclease and protease activities. This unit describes the use of a particular commercial reconstituted system, "PURExpress®" This system allows in vitro synthesis of proteins from mRNA and circular and linear DNA templates, as well as co-translational labeling of proteins. Unique to this system, all recombinant protein components of the system are His-tagged, allowing purification of the synthesized untagged protein by removing the rest of the system’s components. Newly synthesized proteins can often be visible on a SDS-PAGE gel and directly assayed for their functions without labeling and purification. Certain components of the system, such as ribosomes or release factors, can be omitted for specific applications. Such "delta" versions of the system are well suited for studies of bacterial translation, assays of ribosome functions, incorporation of unnatural amino acids and ribosome display of protein libraries.
Kinetoplastid membrane protein 11 (KMP-11) from Leishmania donovani is an abundant 11-kDa surface membrane glycoprotein. Lymph node cells from mice of six different H-2 haplotypes immunized with KMP-11 or with L. donovani promastigotes were stimulated to proliferate in vitro with purified KMP-11. Primed purified T cells required antigen presentation since they were not stimulated unless KMP-11-pulsed or L. donovani-infected macrophages were added. Promastigotes of a wide variety ofLeishmania species and procyclic forms of African trypanosomes stimulated proliferation of KMP-11-primed or L. donovani promastigoteprimed lymph node cells. All of the Leishmania promastigotes and African trypanosomes tested contained an 11-kDa protein, as detected by immunoblotting with KMP-11-specific monoclonal antibodies. The widespread distribution of the 11-kDa (KMP-11) molecules and their ability to stimulate strong T-lymphocyte proliferation in a non-H-restricted fashion suggest that they may be important molecules for induction of cell-mediated immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.