In recent years, technological advancements have led to the industrialization of the laser powder bed fusion process. Despite all of the advancements, quality assurance, reliability, and lack of repeatability of the laser powder bed fusion process still hinder risk-averse industries from adopting it wholeheartedly. The process-induced defects or drifts can have a detrimental effect on the quality of the final part, which could lead to catastrophic failure of the finished part. It led to the development of in situ monitoring systems to effectively monitor the process signatures during printing. Nevertheless, post-processing of the in situ data and defect detection in an automated fashion are major challenges. Nowadays, many studies have been focused on incorporating machine learning approaches to solve this problem and develop a feedback control loop system to monitor the process in real-time. In our study, we review the types of process defects that can be monitored via process signatures captured by in situ sensing devices and recent advancements in the field of data analytics for easy and automated defect detection. We also discuss the working principles of the most common in situ sensing sensors to have a better understanding of the process. Commercially available in situ monitoring devices on laser powder bed fusion systems are also reviewed. This review is inspired by the work of Grasso and Colosimo, which presented an overall review of powder bed fusion technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.