Mollusca evolutionary success can be attributed partly to their efficiency to sustain and protect their soft body with an external biomineralized structure, the shell. Current knowledge of the protein set responsible for the formation of the shell microstructural polymorphism and unique properties remains largely patchy. In Pinctada margaritifera and Pinctada maxima, we identified 80 shell matrix proteins, among which 66 are entirely unique. This is the only description of the whole "biomineralization toolkit" of the matrices that, at least in part, is thought to regulate the formation of the prismatic and nacreous shell layers in the pearl oysters. We unambiguously demonstrate that prisms and nacre are assembled from very different protein repertoires. This suggests that these layers do not derive from each other.mantle | mollusk shell matrix proteins | proteome | transcriptome | evolution
The shell of pearl oysters is organized in multiple layers of CaCO(3) crystallites packed together in an organic matrix. Relationships between the components of the organic matrix and mechanisms of nacre formation currently constitute the main focus of research into biomineralization. In this study, we characterized the pearlin protein from the oyster Pinctada margaritifera (Pmarg); this shares structural features with other members of a matrix protein family, N14/N16/pearlin. Pmarg pearlin exhibits calcium- and chitin-binding properties. Pmarg pearlin transcripts are distinctively localized in the mineralizing tissue responsible for nacre formation. More specifically, we demonstrate that Pmarg pearlin is localized within the interlamellar matrix of nacre aragonite tablets. Our results support recent models for multidomain matrix protein involvement in nacreous layer formation. We provide evidence here for the existence of a conserved family of nacre-associated proteins in Pteriidae, and reassess the evolutionarily conserved set of biomineralization genes related to nacre formation in this taxa.
The pearl culture is one of the most lucrative aquacultures worldwide. In many South Pacific areas, it depends on the exploitation of the pearl oyster Pinctada margaritifera and relies entirely on the environmental conditions encountered in the lagoon. In this context, assessing the impact of climatic stressors, such as global warming and ocean acidification, on the functionality of the resource in terms of renewal and exploitation is fundamental. In this study, we experimentally addressed the impact of temperature (22, 26, 30 and 34 °C) and partial pressure of carbon dioxide pCO 2 (294, 763 and 2485 μatm) on the biomineralization and metabolic capabilities of pearl oysters. While the energy metabolism was strongly dependent on temperature, results showed its independence from pCO 2 levels; no interaction between temperature and pCO 2 was revealed. The energy metabolism, ingestion, oxygen consumption and, hence, the scope for growth (SFG) were maximised at 30 °C and dramatically fell at 34 °C. Biomineralization was examined through the expression measurement of nine mantle's genes coding for shell matrix proteins involved in the formation of calcitic prisms and/or nacreous shell structures; significant changes were recorded for four of the nine (Pmarg-Nacrein A1, Pmarg-MRNP34, Pmarg-Prismalin 14 and Pmarg-Aspein). These changes showed that the maximum and minimum expression of these genes was at 26 and 34 °C, respectively. Surprisingly, the modelled thermal optimum for biomineralization (ranging between 21.5 and 26.5 °C) and somatic growth and reproduction (28.7 °C) appeared to be significantly different. Finally, the responses to high temperatures were contextualised with the Intergovernmental Panel on Climate Change (IPCC) projections, which highlighted that pearl oyster stocks and cultures would be severely threatened in the next decade. Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.
The emerging orbicular batfish (Platax orbicularis) aquaculture is the most important fish aquaculture industry in French Polynesia. However, bacterial infections are causing severe mortality episodes. Therefore, there is an urgent need to find an effective management solution. Besides the supplying difficulty and high costs of veterinary drugs in French Polynesia, batfish aquaculture takes place close to the coral reef, where use of synthetic persistent drugs should be restricted. Medicinal plants and bioactive algae are emerging as a cheaper and more sustainable alternative to chemical drugs. We have studied the effect of local Polynesian plants and the local opportunistic algae Asparagopsis taxiformis on batfish when orally administered. Weight gain and expression of two immune-related genes (lysozyme g - Lys G and transforming growth factor beta - TGF-β1) were studied to analyze immunostimulant activity of plants on P. orbicularis. Results showed that several plants increased Lys G and TGF-β1 expression on orbicular batfish after 2 and 3 weeks of oral administration. A. taxiformis was the plant displaying the most promising results, promoting a weight gain of 24% after 3 weeks of oral administration and significantly increasing the relative amount of both Lys G and TGF-β1 transcripts in kidney and spleen of P. orbicularis.
Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO3 and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those of the other nacre proteins already described. This unusual methionine-rich protein is a new member in the growing list of low complexity domain containing proteins that are associated with biocalcifications. These observations offer new insights to the molecular mechanisms of biomineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.