The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.
We report 143 Australian and North American cases of primary nemaline myopathy. As classified by the European Neuromuscular Centre guidelines, 23 patients had severe congenital, 29 intermediate congenital, 66 typical congenital, 19 childhood-onset, and 6 adult-onset nemaline myopathy. Inheritance was autosomal recessive in 29 patients, autosomal dominant in 41, sporadic in 72, and indeterminate in 1. Twenty-two patients had skeletal muscle actin mutations and 4 had mutations in the alpha-tropomyosin(slow) gene. Obstetric complications occurred in 49 cases. Seventy-five patients had significant respiratory disease during the first year of life, and 79 had feeding difficulties. Atypical features in a minority of cases included arthrogryposis, central nervous system involvement, and congenital fractures. Progressive distal weakness developed in a minority of patients. Thirty patients died, the majority during the first 12 months of life. All deaths were due to respiratory insufficiency, which was frequently underrecognized in older patients. Arthrogryposis, neonatal respiratory failure, and failure to achieve early motor milestones were associated with early mortality. Morbidity from respiratory tract infections and feeding difficulties frequently diminished with increasing age. Aggressive early management is warranted in most cases of congenital nemaline myopathy.
Very numerous nemaline bodies, glycogen accumulation, and marked sarcomeric disruption were common in nemaline myopathy associated with mutations in skeletal alpha-actin. Nemaline myopathy due to mutations in alpha-tropomyosin(SLOW) was characterized by preferential rod formation in, and atrophy of, type 1 fibers. Light microscopic features of nemaline myopathy correlate poorly with disease course. Electron microscopy may correlate better with disease severity and genotype.
Nemaline myopathy (NM) is the most common of several congenital myopathies that present with skeletal muscle weakness and hypotonia. It is clinically heterogeneous and the diagnosis is confirmed by identification of nemaline bodies in affected muscles. The skeletal muscle alpha-actin gene (ACTA1) is one of five genes for thin filament proteins identified so far as responsible for different forms of NM. We have screened the ACTA1 gene in a cohort of 109 unrelated patients with NM. Here, we describe clinical and pathological features associated with 29 ACTA1 mutations found in 38 individuals from 28 families. Although ACTA1 mutations cause a remarkably heterogeneous range of phenotypes, they were preferentially associated with severe clinical presentations (p < 0.0001). Most pathogenic ACTA1 mutations were missense changes with two instances of single base pair deletions. Most patients with ACTA1 mutations had no prior family history of neuromuscular disease (24/28). One severe case, caused by compound heterozygous recessive ACTA1 mutations, demonstrated increased alpha-cardiac actin expression, suggesting that cardiac actin might partially compensate for ACTA1 abnormalities in the fetal/neonatal period. This cohort also includes the first instance of an ACTA1 mutation manifesting with adult-onset disease and two pedigrees exhibiting potential incomplete penetrance. Overall, ACTA1 mutations are a common cause of NM, accounting for more than half of severe cases and 26% of all NM cases in this series.
The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.