Rationale:The respiratory tract is constantly exposed to airborne microorganisms. Nevertheless, normal airways remain sterile without recruiting phagocytes. This innate immune activity has been attributed to mucociliary clearance and antimicrobial polypeptides of airway surface liquid. Defective airway immunity characterizes cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator, a chloride channel. The pathophysiology of defective immunity in CF remains to be elucidated. Objective: We investigated the ability of non-CF and CF airway epithelia to kill bacteria through the generation of reactive oxygen species (ROS). Methods: ROS production and ROS-mediated bactericidal activity were determined on the apical surfaces of human and rat airway epithelia and on cow tracheal explants. Measurements and Main Results: Dual oxidase enzyme of airway epithelial cells generated sufficient H 2 O 2 to support production of bactericidal hypothiocyanite (OSCN ؊ ) in the presence of airway surface liquid components lactoperoxidase and thiocyanate (SCN ؊ ). This OSCN ؊ formation eliminated Staphylococcus aureus and Pseudomonas aeruginosa on airway mucosal surfaces, whereas it was nontoxic to the host. In contrast to normal epithelia, CF epithelia failed to secrete SCN ؊ , thereby rendering the oxidative antimicrobial system inactive. Conclusions: These data indicate a novel innate defense mechanism of airways that kills bacteria via ROS and suggest a new cellular and molecular basis for defective airway immunity in CF.
Activated Ras oncogene induces DNA-damage response by triggering reactive oxygen species (ROS) production and this is critical for oncogene-induced senescence. Until now, little connections between oncogene expression, ROS-generating NADPH oxidases and DNA-damage response have emerged from different studies. Here we report that H-RasV12 positively regulates the NADPH oxidase system NOX4-p22phox that produces H2O2. Knocking down the NADPH oxidase with small interference RNA decreases H-RasV12-induced DNA-damage response detected by γ-H2A.X foci analysis. Using HyPer, a specific probe for H2O2, we detected an increase in H2O2 in the nucleus correlated with NOX4-p22phox perinuclear localization. DNA damage response can be caused not only by H-RasV12-driven accumulation of ROS but also by a replicative stress due to a sustained oncogenic signal. Interestingly, NOX4 downregulation by siRNA abrogated H-RasV12 regulation of CDC6 expression, an essential regulator of DNA replication. Moreover, senescence markers, such as senescence-associated heterochromatin foci, PML bodies, HP1β foci and p21 expression, induced under H-RasV12 activation were decreased with NOX4 inactivation. Taken together, our data indicate that NADPH oxidase NOX4 is a critical mediator in oncogenic H-RasV12-induced DNA-damage response and subsequent senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.