Changes in the brain, which include changes in the endocannabinoid system, prompt it to use different strategies (spatial and procedural, or others not evaluated in this study) to cope with the environmental demands. These cerebral changes are adaptive responses to the light-dark cycle.
Homer1a (H1a) is an immediate early gene involved in multiple forms of synaptic plasticity. It exhibits a postnatal increase in the rat forebrain (Brakeman et al. (1997) Nature 386:284-288) and reduces the density and size of dendritic spines in hippocampal neurons (Sala et al. (2003) J Neurosci 23:6327-6337). We evaluated hippocampal H1a expression at different postnatal ages (P3, P5, P7, P9, P15, P19, P23, P35, and adult) using Fluorescence In Situ Hybridization (FISH) and qRT-PCR. Maximal electroconvulsive shock (MECS) was used to induce maximal expression relative to home cage (HC) controls. Large scale images and confocal z-stacks from dorsal subiculum (DS), CA1, CA3, and dentate gyrus (DG) were analyzed by both manual and automated methods. In DS, CA1, and CA3 a significant proportion of cells (40%) expressed small but detectable levels of H1a from P3; however, MECS did not up-regulate H1a during the first postnatal week. MECS induced H1a positive cells during the second postnatal week and induction reached adult levels at P9. H1a-Intra Nuclear Foci (INF) size and intensity varied with age, increasing at P19-23 in CA1 and CA3 and from P9 to P23 in DS. In DG, H1a expression exhibited a lamination pattern and an H1a-INF size and intensity gradient across the granule cell layer, consistent with the outside-in maturation of DG granule cells. The developmental progression of H1a corresponds to the synaptic refinement period supporting the conclusion that H1a could play an important role in this process.
The central nervous system control of food intake has been extensively studied, hence, several neurotransmitter systems regulating this function are now clearly identified, for example, the endocannabinoid and serotoninergic systems. The former stimulates feeding while the latter inhibits it. Oleamide (Ole) is a cannabimimetic molecule affecting both systems. In this work, we tested the orexigenic and anorectic potential of Ole when administered into the nucleus accumbens shell (NAcS), a brain region that has been related to the orexigenic effects of cannabinoids. Additionally, we tested if Ole administered into this nucleus affects the activity of the hypothalamic nuclei involved in feeding behaviour, just as other cannabinoids do. We found a hyperphagic effect of Ole that is mediated through CB1 activation. The combination of Ole and the CB1 antagonist, AM251, produced a hypophagia that was fully blocked by SB212084, a 5-HT2C receptor antagonist. We also show that blockade of 5-HT2C and 5-HT2A receptors in the NAcS stimulates food intake. Finally, the combination of Ole and AM251 activates hypothalamic nuclei, an effect also blocked by SB242084. In conclusion, we show, for the first time, that Ole administered into the NAcS has a dual effect on feeding behaviour, acting through cannabinoid and serotonin receptors. These effects probably result from a downstream interaction with the hypothalamus.
It has been suggested that sleep has a restorative function; however, experimental support is limited. Hence, we investigated whether changes in the level of antiapoptotic BCL-2 protein and proapoptotic BAX protein occur during sleep deprivation (SD) and sleep rebound, and evaluated the spontaneous changes in these proteins, along the light-dark cycle, in the adult male Wistar rat. Estimations were made in the prefrontal cortex, hippocampus, striatum, and pons. We observed that BCL-2 exhibited diurnal variations in the prefrontal cortex and striatum, whereas BAX varied in the striatum and showed only small variations in the pons as measured by immunoblotting. The BCL-2/BAX ratio exhibited diurnal variations in the prefrontal cortex and striatum. BCL-2 and BAX levels were affected by 24 hr of total SD and 24 hr of sleep rebound. SD decreased the BCL-2/BAX ratio in the prefrontal cortex and pons. Sleep rebound increased the BCL-2/BAX ratio in the hippocampus. In conclusion, the BCL-2/BAX ratio is high during the dark phase as compared with the light phase in the prefrontal cortex and during the light phase as compared with the dark phase in the striatum. SD decreased the BCL-2/BAX ratio in the prefrontal cortex and pons, whereas sleep rebound increased it in the hippocampus. These changes point out structures in the brain that express these proteins as a response to the light-dark cycle. Similarly, SD and sleep rebound seem to change these proteins expression in some other brain structures, suggesting that cellular vulnerability might be altered by these changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.