A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade, PCR assays have been developed for the direct detection of fungi in nail samples. In this study, we describe a PCR-terminal restriction fragment length polymorphism (TRFLP) assay to directly and routinely identify the infecting fungi in nails. Fungal DNA was easily extracted using a commercial kit after dissolving nail fragments in an Na 2 S solution. Trichophyton spp., as well as 12 NDF, could be unambiguously identified by the specific restriction fragment size of 5=-end-labeled amplified 28S DNA. This assay enables the distinction of different fungal infectious agents and their identification in mixed infections. Infectious agents could be identified in 74% (162/219) of cases in which the culture results were negative. The PCR-TRFLP assay described here is simple and reliable. Furthermore, it has the possibility to be automated and thus routinely applied to the rapid diagnosis of a large number of clinical specimens in dermatology laboratories.
Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates.
Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.