Wild-type p53 is a tumor suppressor gene which can activate or repress transcription, as well as induce apoptosis. The human p53 proline-rich domain localized between amino acids 64 and 92 has been reported to be necessary for efficient growth suppression. This study shows that this property mainly results from impaired apoptotic activity. Although deletion of the proline-rich domain does not affect transactivation of several promoters, such as WAF1, MDM2 and BAX, it does alter transcriptional repression, reactive oxygen species production and sequence-specific transactivation of the PIG3 gene, and these are activities which affect apoptosis. Whereas gel retardation assays revealed that this domain did not alter in vitro the specific binding to the p53-responsive element of PIG3, this domain plays a critical role in transactivation from a synthetic promoter containing this element. To explain this discrepancy, evidence is given for a prolinerich domain-mediated cellular activation of p53 DNA binding.
Purpose: The insulin-like growth factor (IGF) signaling axis is frequently dysregulated in hepatocellular carcinoma (HCC). Therefore, we investigated whether the specific targeting of the IGF type 1 receptor (IGF-1R) might represent a new therapeutic approach for this tumor. Experimental Design: Total and phosphorylated levels of IGF-1R were measured in 21 paired samples of human HCCs and adjacent nontumoral livers using ELISA. The antineoplastic potency of a novel anti-IGF-1R antibody, AVE1642, was examined in five human hepatoma cell lines. Results: Overexpression of IGF-1R was detected in 33% of HCCs and increased activation of IGF-1R was observed in 52% of tumors. AVE1642 alone had moderate inhibitory effects on cell viability. However, its combination with gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, induced supra-additive effects in all cell lines that were associated with cell cycle blockage and inhibition of AKT phosphorylation. The combination of AVE1642 with rapamycin also induced a synergistic reduction of viability and of AKT phosphorylation. Of marked interest, AVE1642 alone up-regulated the phosphorylated and total levels of HER3, the main partner of EGFR, and AVE1642-induced phosphorylation of HER3 was prevented by gefitinib. Moreover, the down-regulation of HER3 expression with siRNA reduced AKT phosphorylation and increased cell sensitivity to AVE1642. Conclusions: These findings indicate that hepatoma cells overcome IGF-1R inhibition through HER3 activation in an EGFR-dependent mechanism, and that HER3 represents a critical mediator in acquired resistance to anti-IGF-1R therapy. These results provide a strong rational for targeting simultaneously EGFR and IGF-1R in clinical trials for HCC]. (Clin Cancer Res 2009;15(17):5445-56)
The wild-type protein product of the p53 tumor suppressor gene can activate transcription of genes which are involved in mediating either growth arrest, e.g. WAF1 or apoptotis, e.g. BAX and PIG3. Additionally, p53 can repress a variety of promoters, which, in turn, may be responsible for the functional activities exhibited by p53. This study shows that the Q22, S23 double mutation, which is known to inactivate a p53 transactivation subdomain located within the initial 40 residues of the protein, while abrogating transactivation from the WAF1 promoter, only attenuates apoptosis triggering, transactivation from other p53-responsive promoters and repression of promoters by p53. The Q53, S54 double mutation, which inactivates another p53 transactivation subdomain situated between amino acids 43 and 73 results in attenuation of all of the aforementioned p53 activities. In contrast to the Q22, S23 double mutation, this latter mutation set does not alter mdm-2-mediated inhibition and degradation of p53. Finally, mutation of all four residues results in complete abrogation of every p53 activity mentioned above.
We report here the production and the properties of single chain Fv fragments (scFvs) derived from the antip53 monoclonal antibodies PAb421 and 11D3. 11D3 is a newly generated monoclonal antibody which exhibits properties very comparable to those of PAb421. The scFvs PAb421 and 11D3 are able to stably associate with p53 and to restore the DNA binding activity of some p53 mutants in vitro. When expressed in p53 7/7 human tumour cells, the scFv421 is essentially localized in the cytoplasm in the absence of p53, and in the nucleus when exogenous p53 is present. Thus, p53 is also able to stably associate with an anti-p53 scFv in cells. Cotransfection of p53 7/7 human tumour cells with expression vectors encoding the His273 p53 mutant and either scFv leads to restoration of the p53 mutant de®cient transcriptional activity. These data demonstrate that, in human tumour cells, these scFvs are able to restore a function essential for the tumour suppressor activity of p53 and may represent a novel class of molecules for p53-based cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.