Summary1. Artificial night lighting threatens to disrupt strongly conserved light-dependent processes in animals and may have cascading effects on ecosystems as species interactions become altered. Insectivorous bats and their prey have been involved in a nocturnal, co-evolutionary arms race for millions of years. Lights may interfere with anti-bat defensive behaviours in moths, and disrupt a complex and globally ubiquitous interaction between bats and insects, ultimately leading to detrimental consequences for ecosystems on a global scale. 2. We combined experimental and mathematical approaches to determine effects of light pollution on a free-living bat-insect community. We compared prey selection by Cape serotine bats Neoromicia capensis in naturally unlit and artificially lit conditions using a manipulative field experiment, and developed a probabilistic model based on a suite of prey-selection factors to explain differences in observed diet. 3. Moth consumption by N. capensis was low under unlit conditions (mean percentage volume AE SD: 5Á91 AE 6Á25%), while moth consumption increased sixfold (mean percentage volume AE SD: 35Á42 AE 17Á90%) under lit conditions despite a decrease in relative moth abundance. Predictive prey-selection models that included high-efficacy estimates for eared-moth defensive behaviour found most support given diet data for bats in unlit conditions. Conversely, models that estimated eared-moth defensive behaviour as absent or low found more support given diet data for bats in lit conditions. Our models therefore suggest the increase in moth consumption was a result of light-induced, decreased eared-moth defensive behaviour. 4. Policy implications. In the current context of unyielding growth in global light pollution, we predict that specialist moth-eating bats and eared moths will face ever-increasing challenges to survival through increased resource competition and predation risk, respectively. Lights should be developed to be less attractive to moths, with the goal of reducing effects on moth behaviour. Unfortunately, market preference for broad-spectrum lighting and possible effects on other taxa make development of moth-friendly lighting improbable. Mitigation should therefore focus on the reduction of temporal, spatial and luminance redundancy in outdoor lighting. Restriction of light inside nature reserves and urban greenbelts can help maintain dark refugia for moth-eating bats and moths, and may become important for their persistence.
1. Despite a long history of significant advances in understanding natural selection and evolution, the field of plant reproductive biology has largely studied plant mating without directly tracking pollen movement due to a lack of suitable pollentracking methods.2. Here, we develop and test a novel pollen-tracking technique using quantum dots as pollen-grain labels. Quantum dots are semiconductor nanocrystals that are so small, they behave like atoms. When exposed to UV light, they emit extremely bright light in both visible and infrared wavelengths. We tested the suitability of non-toxic CuInSe x S 2 − x /ZnS (core/shell) quantum dots with oleic-acid ligands as pollen-grain labels. Using a micropipette, we dispensed quantum dots dissolved in hexane in minute volumes (0.15-0.5 μl) directly onto dehisced anthers of four different plant species from four different families (Wachendorfia paniculata [Haemodoraceae], Sparaxis villosa [Iridaceae], Arctotheca calendula [Asteraceae], Oxalis purpurea [Oxalidaceae]).3. After application, the hexane solvent evaporated immediately, leaving behind quantum dots that remained attached to pollen grains of the four different plant species even after agitation in a polar solvent. This suggests a lipophilic interaction between oleic-acid ligands on quantum dots, and pollenkitt surrounding pollen grains. We also showed that most pollen grains within anthers of the same four plant species were labelled with quantum dots after applying a volume of quantum-dot solution sufficient to cover an individual anther. To test whether quantum-dot pollen labels influenced pollen transport, we conducted pollen transfer trials (one donor, 10 sequential recipients) on S. villosa using captively reared honey bees to ensure bees were free of external pollen prior to experiments. We found no difference in pollen transport to recipients from donor flowers with labelled or unlabelled pollen grains.4. We demonstrate that quantum dots can be used as pollen labels allowing subsequent tracking of pollen fates. This method is relatively inexpensive (<$500 for equipment and ca. $0.02 per labelled anther thereafter) and can be simply and directly applied to anthers of most flowers in the lab and field. The ability to track pollen grain movement in situ, may help to address a historically neglected aspect of plant reproductive ecology and evolution.
The causative link between phenotypic divergence and reproductive isolation is an important but poorly understood part of ecological speciation. We studied the effects of floral-tube length variation on pollen placement/receipt positions and reproductive isolation.In a population of Lapeirousia anceps (Iridaceae) with bimodal floral-tube lengths, we labelled pollen of short-and long-tubed flowers with different colour fluorescent nanoparticles (quantum dots). This enabled us to map pollen placement by long-and short-tubed flowers on the only floral visitor, a long-proboscid fly. Furthermore, it allowed us to quantify pollen movement within and between short-and long-tubed flowers.Short-and long-tubed flowers placed pollen on different parts of the pollinator, and longtubed flowers placed more pollen per visit than short-tubed flowers. This resulted in assortative pollen receipt (most pollen received comes from the same phenotype) and strong but asymmetric reproductive isolation, where short-tubed plants are more reproductively isolated than long-tubed plants.These results suggest that floral-tube length divergence can promote mechanical isolation in plants through divergence in pollen placement sites on pollinators. Consequently, in concert with other reproductive isolation mechanisms, selection for differences in floral-tube length can play an important role in ecological speciation of plants.
Over the last century the temporal and spatial distribution of light on Earth has been drastically altered by human activity. Despite mounting evidence of detrimental effects of light pollution on organisms and their trophic interactions, the extent to which light pollution threatens biodiversity on a global scale remains unclear. We assessed the spatial extent and magnitude of light encroachment by measuring change in the extent of light using satellite imagery from 1992 to 2012 relative to species richness for terrestrial and freshwater mammals, birds, reptiles, and amphibians. The encroachment of light into previously dark areas was consistently high, often doubling, in areas of high species richness for all four groups. This pattern persisted for nocturnal groups (e.g., bats, owls, and geckos) and species considered vulnerable to extinction. Areas with high species richness and large increases in light extent were clustered within newly industrialized regions where expansion of light is likely to continue unabated unless we act to conserve remaining darkness. Implementing change at a global scale requires global public, and therefore scientific, support. Here, we offer substantial evidence that light extent is increasing where biodiversity is high, representing an emerging threat to global biodiversity requiring immediate attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.