During the late-phase asthmatic response, eosinophils migrate to the bronchial tissue and cause severe damage. In this study we compared in vivo primed eosinophils from patients with allergic asthma with eosinophils from healthy control subjects in their adhesion behavior to tumor necrosis factor-alpha-activated endothelium under flow conditions (0.8 dyn/cm2). More eosinophils from patients with asthma adhered to activated endothelium, compared with cells from healthy control subjects (1,237 +/- 126 versus 887 +/- 94 cells/mm2, respectively). In the presence of blocking antibodies directed against very late antigen-4 and E-selectin, the residual binding of the cells of individuals with allergic asthma was significantly higher than that of the healthy control subjects (353 +/- 64 versus 123 +/- 31 cells/mm2, respectively, P < 0.02). In addition, secondary tethering or formation of clusters of the eosinophils of patients with allergic asthma was significantly increased compared with the healthy control subjects (cluster indices 1.8 +/- 0.3 versus 0.8 +/- 0.2, respectively, P < 0.05). Because patient cells showed an enhanced interaction with platelets during the perfusions, the role of P-selectin on platelets was investigated. Blocking antibodies directed against P-selectin reduced the enhanced binding and clustering of eosinophils of patients with allergic asthma. We conclude that P-selectin-bearing platelets contribute to secondary tethering processes of eosinophils to activated endothelium. Therefore, platelets might play an important role in the chronic inflammatory processes of these patients.
The hypothesis was tested that different chemoattractants have different effects on the activity of integrins expressed by the human eosinophil. Three chemoattractants, CXCL8 (IL-8), CCL11 (eotaxin-1), and C5a were tested with respect to their ability to induce migration and the transition of eosinophils from a rolling interaction to a firm arrest on activated endothelial cells under flow conditions. CCL11 and C5a induced a firm arrest of eosinophils rolling on an endothelial surface, whereas CXCL8 induced only a transient arrest of the cells. The CXCL8- and CCL11-induced arrest was inhibited by simultaneously blocking α4 integrins (HP2/1) and β2 integrins (IB4). In contrast, the C5a-induced arrest was only inhibited by 30% under these conditions. The potency differences of C5a>CCL11>CXCL8 to induce firm adhesion under flow condition was also observed in migration assays and for the activation of the small GTPase Rap-1, which is an important signaling molecule in the inside-out regulation of integrins. Interestingly, only C5a was able to induce the high activation epitope of αMβ2 integrin recognized by MoAb CBRM1/5. The C5a-induced appearance of this epitope and Rap activation was controlled by phospholipase C (PLC), as was shown with the PLC inhibitor U73122. These data show that different chemoattractants are able to induce distinct activation states of integrins on eosinophils and that optimal chemotaxis is associated with the high activation epitope of the αMβ2 integrin. Furthermore, PLC plays an important role in the inside-out signaling and, thus, the activation status of integrins on eosinophils.
Leptin is an adipokine that is thought to be important in many inflammatory diseases, and is known to influence the function of several leukocyte types. However, no clear consensus is present regarding the responsiveness of neutrophils for this adipokine. In this study a 2D DIGE proteomics approach was used as an unbiased approach to identify leptin-induced effects on neutrophils. Additionally chemotaxis and survival experiments were performed to reproduce results from literature showing putative effects of leptin on these neutrophil responses. Leptin did not induce any significant changes in the proteome provided leptin was added at physiologically relevant concentrations (250 ng). Our leptin batches were biologically active as they induced proliferation in LeptinR expressing Ba/F3 cells. At high concentrations (25000 ng) leptin induced a change in neutrophil proteome. Seventeen differently regulated spots were identified of which twelve could be characterized by mass spectrometry. Two of these identified proteins, SerpinB1 and p40 phox, were chosen for further analysis but leptin-induced expression analyzed by western blot were highly variable. Additionally leptin also induced neutrophil survival at these high concentrations. No leptin-induced chemotaxis of human neutrophils was detected at any concentration. In conclusion, physiological concentrations of leptin do not affect neutrophils. High leptin concentrations induced survival and changes in the neutrophils proteome, but this was most likely mediated by an indirect effect. However, it cannot be ruled out that the effects were mediated by a yet not-identified leptin receptor on human neutrophils.
Neutrophil antibacterial capacity is measured in animal models and in vitro as an important indicator of neutrophil function. To be able to extrapolate their conclusions, in vitro experiments should mimic the in vivo situation. In vivo, antibacterial capacity depends on multiple steps of bacterial sensing, priming, chemotaxis, phagocytosis and intracellular killing. Therefore, we developed a simply executed assay that involves multiple steps in one assay. The neutrophils were incorporated into a three-dimensional matrix of fibrin fibers, in which they could freely migrate. The fibrin matrix provided a more physiological representation of tissue structure than a shaken suspension and extended ex vivo survival of neutrophils. Staphylococci endogenously producing GFP (Green Fluorescent Protein) provided a real-time quantification of the bacterial load without the need for lysing the fibrin matrix or counting of colony forming units on agar plates. The delay in bacterial outgrowth serves as a measure for the relative antibacterial capacity of the neutrophils. Additionally, neutrophil capacity could easily be measured high-throughput in a 96-wells format. In this new assay we study neutrophil behavior in a physiologically relevant setting and explore many functions of the neutrophil in a single test. The functional capacity of neutrophils from different in vitro treatments or different donors can directly be compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.