Overexpression of the Notch antagonist Hairless (H) during imaginal development in Drosophila is correlated with tissue loss and cell death. Together with the co-repressors Groucho (Gro) and C-terminal binding protein (CtBP), H assembles a repression complex on Notch target genes, thereby downregulating Notch signalling activity. Here we investigated the mechanisms underlying H-mediated cell death in S2 cell culture and in vivo during imaginal development in Drosophila. First, we mapped the domains within the H protein that are required for apoptosis induction in cell culture. These include the binding sites for the co-repressors, both of which are essential for H-mediated cell death during fly development. Hence, the underlying cause of H-mediated apoptosis seems to be a transcriptional downregulation of Notch target genes involved in cell survival. In a search for potential targets, we observed transcriptional downregulation of rho-lacZ and EGFR signalling output. Moreover, the EGFR antagonists lozenge, klumpfuss and argos were all activated upon H overexpression. This result conforms to the proapoptotic activity of H, as these factors are known to be involved in apoptosis induction. Together, the results indicate that H induces apoptosis by downregulation of EGFR signalling activity. This highlights the importance of a coordinated interplay of Notch and EGFR signalling pathways for cell survival during Drosophila development.
In a genetic screen, alpha-4GT1 has been identified as a potential enhancer of Hairless-mediated cell death in the eye of Drosophila. alpha-4GT1 encodes an alpha-1,4-glycosyltransferase, known to catalyze the fifth step in a series of ceramide glycosylation events. As reported for other enzymes involved in the glycosylation of ceramide, alpha-4GT1 is strongly expressed during oogenesis and is deposited maternally in the egg. Moreover, the protein is enriched at cell membranes. Unexpectedly, overexpression of alpha-4GT1 does not enhance Hairless-mediated cell death; instead, Hairless enhancement is caused by an allele of Scutoid present on the alpha-4GT1 chromosome. Interestingly, the downregulation of alpha-4GT1 during eye development amplifies cell death induction by the pro-apoptotic gene reaper. Accordingly, overexpression of alpha-4GT1 represses reaper-induced cell death. Thus, alpha-4GT1 appears to be an inhibitor of apoptosis, as has previously been observed for other ceramide glycosylating enzymes, suggesting that it likewise contributes to ceramide anchoring in the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.