Nodal-related 1 (ndr1) and nodal-related 2 (ndr2) genes in zebrafish encode members of the nodal subgroup of the transforming growth factor-beta superfamily. We report the expression patterns and functional characteristics of these factors, implicating them in the establishment of dorsal-ventral polarity and left-right asymmetry. Ndr1 is expressed maternally, and ndr1 and ndr2 are expressed during blastula stage in the blastoderm margin. During gastrulation, ndr expression subdivides the shield into two domains: a small group of noninvoluting cells, the dorsal forerunner cells, express ndr1, while ndr2 RNA is found in the hypoblast layer of the shield and later in notochord, prechordal plate, and overlying anterior neurectoderm. During somitogenesis, ndr2 is expressed asymmetrically in the lateral plate as are nodal-related genes of other organisms, and in a small domain in the left diencephalon, providing the first observation of asymmetric gene expression in the embryonic forebrain. RNA injections into Xenopus animal caps showed that Ndr1 acts as a mesoderm inducer, whereas Ndr2 is an efficient neural but very inefficient mesoderm inducer. We suggest that Ndr1 has a role in mesoderm induction, while Ndr2 is involved in subsequent specification and patterning of the nervous system and establishment of laterality.
As growing retinotectal axons navigate from the eye to the tectum, they sense guidance molecules distributed along the optic pathway. Mutations in the zebrafish astray gene severely disrupt retinal axon guidance, causing anterior-posterior pathfinding defects, excessive midline crossing, and defasciculation of the retinal projection. Eye transplantation experiments show that astray function is required in the eye. We identify astray as zebrafish robo2, a member of the Roundabout family of axon guidance receptors. Retinal ganglion cells express robo2 as they extend axons. Thus, robo2 is required for multiple axon guidance decisions during establishment of the vertebrate visual projection.
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.
IFNAR1 in IECs, and Paneth cells in particular, contributes to the regulation of the host-microbiota relationship, with consequences for intestinal regeneration and colitis-associated tumour formation.
In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.