Cerebral small vessel disease (CSVD) is associated with vessel wall changes, microbleeds, bloodbrain barrier (BBB) disturbances, and reduced cerebral blood flow (CBF). As spontaneously hypertensive stroke-prone rats (SHRSP) may be a valid model of some aspects of human CSVD, we aimed to identify whether those changes occur in definite temporal stages and whether there is an initial phenomenon beyond those common vascular alterations. Groups of 51 SHRSP were examined simultaneously by histologic (Hematoxylin-Eosin, IgG-Immunohistochemistry, vessel diameter measurement) and imaging methods (Magnetic Resonance Imaging, 201-ThalliumDiethyldithiocarbamate/99m-Technetium-HMPAO Single Photon Emission Computed Tomography conducted as pilot study) at different stages of age. Vascular pathology in SHRSP proceeds in definite stages, whereas an age-dependent accumulation of erythrocytes in capillaries and arterioles represents the homogeneous initial step of the disease. Erythrocyte accumulations are followed by BBB disturbances and microbleeds, both also increasing with age. Microthromboses, tissue infarctions with CBF reduction, and disturbed potassium uptake represent the final stage of vascular pathology in SHRSP. Erythrocyte accumulations-we parsimoniously interpreted as stases-without cerebral tissue damage represent the first step of vascular pathology in SHRSP. If that initial phenomenon could be identified in patients, these erythrocyte accumulations might be a promising target for implementing prophylactic and therapeutic strategies in human CSVD.
Cerebral small vessel disease (CSVD, cerebral microangiopathy) leads to dementia and stroke-like symptoms. Lacunes, white matter lesions (WML) and microbleeds are the main pathological correlates depicted in in-vivo imaging diagnostics. Early studies described segmental arterial wall disorganizations of small penetrating cerebral arteries as the most pronounced underlying histopathology of lacunes. Luminal narrowing caused by arteriolosclerosis was supposed to result in hypoperfusion with WML and infarcts.We have used the model of spontaneously hypertensive stroke-prone rats (SHRSP) for a longitudinal study to elucidate early histological changes in small cerebral vessels. We suggest that endothelial injuries lead to multiple sites with blood brain barrier (BBB) leakage which cause an ongoing damage of the vessel wall and finally resulting in vessel ruptures and microbleeds. These microbleeds together with reactive small vessel occlusions induce overt cystic infarcts of the surrounding parenchyma. Thus, multiple endothelial leakage sites seem to be the starting point of cerebral microangiopathy. The vascular system reacts with an activated coagulatory state to these early endothelial injuries and by this induces the formation of stases, accumulations of erythrocytes, which represent the earliest detectable histological peculiarity of small vessel disease in SHRSP.In this review we focus on the meaning of the BBB breakdown in CSVD and finally discuss possible consequences for clinicians.
Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic biomarker in amyotrophic lateral sclerosis (ALS), but it remains a matter of debate, whether CSF total tau (ttau), tau phosphorylated at threonine 181 (ptau) and the ptau/ttau ratio could serve as diagnostic biomarker in ALS as well. Moreover, the relationship between CSF NfL and tau measures to further axonal and (neuro)degeneration markers still needs to be elucidated. Our analysis included 89 ALS patients [median (range) age 63 (33-83) years, 61% male, disease duration 10 (0.2-190) months] and 33 age- and sex-matched disease controls [60 (32-76), 49%]. NfL was higher and the ptau/ttau ratio was lower in ALS compared to controls [8343 (1795-35,945) pg/ml vs. 1193 (612-2616), H(1) = 70.8, p < 0.001; mean (SD) 0.17 (0.04) vs. 0.2 (0.03), F(1) = 14.3, p < 0.001], as well as in upper motor neuron dominant (UMND, n = 10) compared to classic (n = 46) or lower motor neuron dominant ALS [n = 31; for NfL: 16,076 (7447-35,945) vs. 8205 (2651-35,138) vs. 8057 (1795-34,951)], Z ≥ 2.5, p ≤ 0.01; for the ptau/ttau ratio: [0.13 (0.04) vs. 0.17 (0.04) vs. 0.18 (0.03), p ≤ 0.02]. In ALS, NfL and the ptau/ttau ratio were related to corticospinal tract (CST) fractional anisotropy (FA) and radial diffusivity (ROI-based approach and whole-brain voxelwise analysis). Factor analysis of mixed data revealed a co-variance pattern between NfL (factor load - 0.6), the ptau/ttau ratio (0.7), CST FA (0.8) and UMND ALS phenotype (- 2.8). NfL did not relate to any further neuroaxonal injury marker (brain volumes, precentral gyrus thickness, peripheral motor amplitudes, sonographic cross-sectional nerve area), but a lower ptau/ttau ratio was associated with whole-brain gray matter atrophy and widespread white matter integrity loss. Higher NfL baseline levels were associated with greater UMN disease burden, more rapid disease progression, a twofold to threefold greater hazard of death and shorter survival times. The findings that higher CSF NfL levels and a reduced ptau/ttau ratio are more associated with clinical UMN involvement and with reduced CST FA offer strong converging evidence that both are markers of central motor degeneration. Furthermore, NfL is a marker of poor prognosis, while a low ptau/ttau ratio indicates extramotor pathology in ALS.
We demonstrate that in a hypertensive rat model that displays features of CSVD from 12 weeks, there is an age-dependent extracellular deposition of Aβ observed from 20 weeks onwards, increased AβPP expression at 20 weeks and ptau accumulation from 26 weeks on. This study suggests that CSVD associated with hypertension results in an age-related failure of Aβ clearance, increase in AβPP expression, and intraneuronal tau hyperphosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.