Large body size is one of the best predictors of long life span across species of mammals. In marked contrast, there is considerable evidence that, within species, larger individuals are actually shorter lived. This apparent cost of larger size is especially evident in the domestic dog, where artificial selection has led to breeds that vary in body size by almost two orders of magnitude and in average life expectancy by a factor of two. Survival costs of large size might be paid at different stages of the life cycle: a higher early mortality, an early onset of senescence, an elevated baseline mortality, or an increased rate of aging. After fitting different mortality hazard models to death data from 74 breeds of dogs, we describe the relationship between size and several mortality components. We did not find a clear correlation between body size and the onset of senescence. The baseline hazard is slightly higher in large dogs, but the driving force behind the trade-off between size and life span is apparently a strong positive relationship between size and aging rate. We conclude that large dogs die young mainly because they age quickly.
Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.