[1] We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned $100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higher ɛ Nd values compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. Higher ɛ Nd values seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.
We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early-Mid Holocene, the period of maximum summer monsoon. Hematite/ goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/ goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering.Crown
[1] Marls of the Metochia section (Gavdos, Greece) have been analyzed using geochemistry, environmental magnetism, and diffuse reflectance spectrometry to study late Miocene paleoenvironmental changes in the eastern Mediterranean region. Fuzzy c-means cluster analysis (FCM), combined with nonlinear mapping (NLM), has been performed on a multiparameter data set to identify and characterize terrigenous source areas from North Africa and the Aegean margin. The parameters included in the FCM were selected on the basis of their univariate characteristics and their ability to trace input changes from regional source areas. The hard isothermal remanent magnetization (HIRM), calculated on a carbonate-free basis, and the Ti/Al ratio are used to distinguish aeolian dust and transport mechanisms of material originating from North Africa. Mass accumulation rates of Al and Ni are employed to represent the input of terrigenous material originating from the Aegean region. CaCO 3 , calculated from Ca abundance, provides information concerning marine productivity and Mn/Al is used to trace reductive diagenesis in the marls. After performing the FCM and NLM analysis, a four-cluster solution has the greatest stability and describes paleoenvironmental changes in both the African and European source areas. The cluster solution clearly reveals the change from input dominated by terrigenous material in the lower parts of the Metochia section to marine input at the top of the section but also reveals changes in paleoenvironmental conditions in North Africa from arid to more humid conditions at $8.2 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.