Cytochrome P450 3A (CYP3A) enzymes constitute an important detoxification system that contributes to primary metabolism of more than half of all prescribed medications. To investigate the physiological and pharmacological roles of CYP3A, we generated Cyp3a-knockout (Cyp3a -/-) mice lacking all functional Cyp3a genes. Cyp3a -/-mice were viable, fertile, and without marked physiological abnormalities. However, these mice exhibited severely impaired detoxification capacity when exposed to the chemotherapeutic agent docetaxel, displaying higher exposure levels in response to both oral and intravenous administration. These mice also demonstrated increased sensitivity to docetaxel toxicity, suggesting a primary role for Cyp3a in xenobiotic detoxification. To determine the relative importance of intestinal versus hepatic Cyp3a in first-pass metabolism, we generated transgenic Cyp3a -/-mice expressing human CYP3A4 in either the intestine or the liver. Expression of CYP3A4 in the intestine dramatically decreased absorption of docetaxel into the bloodstream, while hepatic expression aided systemic docetaxel clearance. These results suggest that CYP3A expression determines impairment of drug absorption and efficient systemic clearance in a tissue-specific manner. The genetic models used in this study provide powerful tools to further study CYP3A-mediated xenobiotic metabolism, as well as interactions between CYP3A and other detoxification systems.
Organic anion transporting polypeptides (OATPs) are uptake transporters for a broad range of endogenous compounds and xenobiotics. To investigate the physiologic and pharmacologic roles of OATPs of the 1A and 1B subfamilies, we generated mice lacking all established and predicted mouse Oatp1a/1b transporters (referred to as Slco1a/1b -/-mice, as SLCO genes encode OATPs). Slco1a/1b -/-mice were viable and fertile but exhibited markedly increased plasma levels of bilirubin conjugated to glucuronide and increased plasma levels of unconjugated bile acids. The unexpected conjugated hyperbilirubinemia indicates that Oatp1a/ 1b transporters normally mediate extensive hepatic reuptake of glucuronidated bilirubin. We therefore hypothesized that substantial sinusoidal secretion and subsequent Oatp1a/1b-mediated reuptake of glucuronidated compounds can occur in hepatocytes under physiologic conditions. This alters our perspective on normal liver functioning. Slco1a/1b -/-mice also showed drastically decreased hepatic uptake and consequently increased systemic exposure following i.v. or oral administration of the OATP substrate drugs methotrexate and fexofenadine. Importantly, intestinal absorption of oral methotrexate or fexofenadine was not affected in Slco1a/1b -/-mice. Further analysis showed that rifampicin was an effective and specific Oatp1a/1b inhibitor in controlling methotrexate pharmacokinetics. These data indicate that Oatp1a/1b transporters play an essential role in hepatic reuptake of conjugated bilirubin and uptake of unconjugated bile acids and drugs. Slco1a/1b -/-mice will provide excellent tools to study further the role of Oatp1a/1b transporters in physiology and drug disposition.
Docetaxel is one of the most widely used anticancer drugs. A major problem with docetaxel treatment, however, is the considerable interpatient variability in docetaxel exposure. Another disadvantage of the drug is that it has a very low oral bioavailability and can therefore only be administered i.v. The drug-metabolizing enzyme cytochrome P450 3A (CYP3A) and the drug transporter P-glycoprotein (P-gp; MDR1) are considered to be major determinants of docetaxel pharmacokinetics. It has been hypothesized that CYP3A and P-gp work synergistically in limiting the systemic exposure to many orally ingested drugs. However, it has been difficult to examine this interplay in vivo. We therefore generated mice lacking all CYP3A and P-gp genes. Although missing two primary detoxification systems, Cyp3a/Mdr1a/1b
The cytochrome P450 3A (CYP3A) enzymes represent one of the most important drug-metabolizing systems in humans. Recently, our group has generated cytochrome P450 3A knockout mice to study this drug-handling system in vivo. In the present study, we have characterized the Cyp3a knockout mice by studying the metabolism of midazolam, one of the most widely used probes to assess CYP3A activity. We expected that the midazolam metabolism would be severely reduced in the absence of CYP3A enzymes. We used hepatic and intestinal microsomal preparations from Cyp3a knockout and wild-type mice to assess the midazolam metabolism in vitro. In addition, in vivo metabolite formation was determined after intravenous administration of midazolam. We were surprised to find that our results demonstrated that there is still marked midazolam metabolism in hepatic (but not intestinal) microsomes from Cyp3a knockout mice. Accordingly, we found comparable amounts of midazolam as well as its major metabolites in plasma after intravenous administration in Cyp3a knockout mice compared with wild-type mice. These data suggested that other hepatic cytochrome P450 enzymes could take over the midazolam metabolism in Cyp3a knockout mice. We provide evidence that CYP2C enzymes, which were found to be up-regulated in Cyp3a knockout mice, are primarily responsible for this metabolism and that several but not all murine CYP2C enzymes are capable of metabolizing midazolam to its 1Ј-OH and/or 4-OH derivatives. These data illustrate interesting compensatory changes that may occur in Cyp3a knockout mice. Such flexible compensatory interplay between functionally related detoxifying systems is probably essential to their biological role in xenobiotic protection.The cytochrome P450 enzymes (P450s) play a pivotal role in the phase I metabolism of drugs and other xenobiotics. In addition, P450s are involved in the synthesis and metabolism of a broad range of endogenous substrates, including steroids, bile acids, and arachidonic acids. Members of the cytochrome P450 3A (CYP3A) subfamily are of particular interest because of their broad substrate specificity and their high inter-and intraindividual variation in expression and activity levels. In humans, four CYP3A enzymes have been identified, but only CYP3A4 and CYP3A5 are considered to be relevant for drug metabolism in adults. In general, CYP3A4 and CYP3A5 have similar substrate specificities, although they may have distinct affinities and turnovers for some substrates (Williams et al., 2002).It is estimated that CYP3A enzymes contribute to the metabolism of approximately half of currently marketed drugs (Guengerich, 1999). Because the CYP3A enzymes are strategically located in the liver and intestinal wall, they have a strong effect on the first-pass metabolism, oral bioavailability, and elimination of administered drugs. Furthermore, the induction and inhibition of CYP3A enzymes are considered important determinants in the therapeutic efficacy and toxicity of numerous drugs (Dresser et al.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.