Estimation of the service time distribution in the discrete-time G I /G/∞-queue based solely on information on the arrival and departure processes is considered. The focus is put on the estimation approach via the so called "sequence of differences". Existing results for this approach are substantially extended by proving a functional central limit theorem for the resultant estimator. Here, the underlying function space is taken to be the space of sequences converging to zero. The moving block bootstrap technique is considered for the estimation of the resultant covariance kernel and is shown to be applicable under mild additional conditions.
This paper considers nonparametric regression models with long memory errors and predictors. Unlike in weak dependence situations, we show that the estimation of the conditional mean has influence on the estimation of both, the conditional variance and the error density. In particular, the estimation of the conditional mean has a negative effect on the asymptotic behaviour of the conditional variance estimator. On the other hand, surprisingly, estimation of the conditional mean may reduce convergence rates of the residual-based Parzen-Rosenblatt density estimator, as compared to the errors-based one. Our asymptotic results reveal small/large bandwidth dichotomous behaviour. In particular, we present a method which guarantees that a chosen bandwidth implies standard weakly dependent-type asymptotics. Our results are confirmed by an extensive simulation study. Furthermore, our theoretical lemmas may be used in different problems related to nonparametric regression with long memory, like crossvalidation properties, bootstrap, goodness-of-fit or quadratic forms.
We study nonparametric estimation problems for discrete-time stochastic networks of GeomX/G/∞ queues. We assume that we are only able to observe the external arrival and external departure processes at the nodes over a stretch of time. Based on such incomplete information of the system, we aim to construct estimators for the unknown general service time distributions at the nodes without imposing any parametric condition. We propose two different estimation approaches. The first approach is based on the construction of a so-called sequence of differences, and a crucial relation between the expected number of external departures at a node and specific sojourn time distributions in the network. The second approach directly utilizes the structure of the cross-covariance functions between external arrival and departure processes at the nodes. Both methods lead to deconvolution problems which we solve explicitly. A detailed simulation study illustrates the numerical performances of our estimators and shows their advantages and disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.