The complex tectonic interplay between the Central Asian Southwest Tien Shan and the north advancing Pamir as well as the role of the Pamir Frontal Thrust (PFT) separating these two orogens along the intervening Alai Valley is yet unclear. In this paper we present data of the newly installed Western Alai GPS profile (WAGP), capturing the deformation signal of both mountain ranges. The 20 km long WAGP records a maximum displacement rate of 9.3 ± 0.8 mm yr À1 . The lion's share of displacement (6.0 ± 0.8 mm yr À1) is accommodated between the two stations located directly north and south of the PFT in 5 km distance. The WAGP data nicely complement the existing South Tien Shan and the Pamir GPS network data, which we present here in a combined reference frame and use it as input for horizontal block rotation/strain models. The model results show that both the Southwest Tien Shan and the Pamir behave as uniformly strained blocks and rotate counterclockwise (with respect to Eurasia) by 0.93 ± 0.11°Myr À1 and 0.62 ± 0.05°Myr À1 , respectively. The Southwest Tien Shan undergoes NNE-SSW shortening of À22.1 ± 1.5 × 10 À9 year À1 with an insignificant perpendicular extension. The Pamir is shortening with a rate of À10.2 ± 3.8 × 10 À9 year À1in a NNE-SSW direction, which is nearly 2.5 times less than its lateral extension rate. A band of increased deformation along the PFT is bounded to the north by the northern rim of the Alai Valley and extends up to 30-50 km south into the Pamir.
Abstract. Long-term monitoring of water resources and climate parameters at the scale of river basins requires networks of continuously operated in-situ stations. Since 2009, GFZ and CAIAG, in cooperation with the National Hydrometeorological Services (NHMS) of Central Asia, are establishing such a regional monitoring network in Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and lately Afghanistan to collect observations of meteorological and hydrological parameters and to deliver them to the end-users for operational tasks and scientific studies. The newly developed and installed remotely operated multi-parameter stations (ROMPS) do not only monitor standard meteorological and hydrological parameters, but also deliver Global Navigation Satellite System (GNSS) data for atmospheric sounding as well as tectonic studies. Additionally, three stations integrate seismic sensors for earthquake monitoring. The observational data from the ROMPS is transmitted nominally in near-real time, but at least once a day to a centralized geo-database infrastructure for long-term storage and data redistribution. Users can access the data manually using a web-interface or automatically using SOS requests; in addition, data is planed to be distributed to the NHMS through standard communication and data exchange channels.
Abstract. Coastal tide gauges do not only play a central role in the study of climate-related sea level changes but also in tsunami warning systems. Over the past five years, ten GPScontrolled tide gauge systems have been installed by the German Research Centre for Geosciences (GFZ) in Indonesia to assist the development of the Indonesian Tsunami Early Warning System (InaTEWS). These stations are mainly installed at the Indonesian coastline facing the Indian Ocean. The tide gauge systems deliver information about the instantaneous sea level, vertical control information through GPS, and meteorological observations. A tidal analysis at the station's computer allows the detection of rapid changes in the local sea level ("sea level events"/SLE), thus indicating, for example, the arrival time of tsunamis. The technical implementation, communication issues, the operation and the sea level event detection algorithm, and some results from recent earthquakes and tsunamis are described in this paper.
Abstract. On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for nearfield installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.
Long-term monitoring of water resources and climate parameters at the scale of river basins requires networks of continuously operated in-situ stations. Since 2009, GFZ and CAIAG, in cooperation with the National Hydrometeorological Services (NHMS), are establishing such a regional monitoring network in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Afghanistan) which is collecting observations of meteorological and hydrological parameters and delivering them to the end-users. The network design focuses mainly on the higher elevations where the recent decline of monitoring stations and networks established in Soviet times was strongest, and the resulting observational gap hinders research on climate and hydrological change as well as operational tasks in water management such as the seasonal runoff forecast.
The newly developed and installed Remotely Operated Multi-Parameter Stations (ROMPS) do not only monitor standard meteorological and hydrological parameters, but also deliver GPS data for atmospheric sounding as well as tectonic studies. The observational data from the ROMPS is transmitted at least once a day to a centralized geo-database infrastructure for long-term storage and data redistribution. Users can access the data manually using a web-interface or automatically using SOS requests; in addition, data is distributed to the NHMS through standard communication and data exchange channels
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.