BackgroundDespite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential—estimated as total glucose productivity per hectare (TGP)—of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion.ResultsSystematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha−1) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption.ConclusionsGenetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if “less severe” processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0479-0) contains supplementary material, which is available to authorized users.
The utilization of maize stover as a substrate for bioenergy production demands the development of dual-purpose hybrid varieties combining both, optimal grain yield and improved biomass processing amenability. In this study, our objectives were to assess how contrasting environments influence the expression of cell wall composition and bioconversion traits relevant to cellulosic fuel production, and to study how these traits are inherited in hybrid combinations. To this end, a panel of maize double haploid (DH) lines and their corresponding test-cross (TC) offspring were tested under different locations (primarily in the Netherlands) and characterized for a variety of cell wall compositional and bioconversion features relevant to cellulosic fuel production. Overall, the DH and TC sets displayed extensive genotypic diversity in cell wall composition, polymeric ultrastructure and bioconversion characteristics. Heritability for the different traits was generally high (h 2 [ *0.60); essentially implying that systematic differences between genotypes remained constant across divergent environmental conditions. Moreover, correlations between the performance of DH lines and related TC hybrids were significant and favorable for most investigated traits. Strong associations (r [ *0.50) were especially prominent for cell wall lignin content, degree of substitution of cell wall glucuronoarabinoxylans and cell wall convertibility following pretreatment and enzymatic hydrolysis. In conclusion, complex cell wall bioconversion traits constitute accessible and reliable selection criteria for incorporation in modern breeding programs seeking to advance bio-based maize hybrid varieties. The high heritability and environmental stability of these traits guarantee high selection efficacy during the development of superior DH/inbred material; and their predominantly additive nature prescribe that preliminary selection at the inbred level will guarantee similar correlated genetic gains in hybrid breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.