Neonicotinoid insecticides are successfully applied to control pests in a variety of agricultural crops; however, they may not only affect pest insects but also non-target organisms such as pollinators. This review summarizes, for the first time, 15 years of research on the hazards of neonicotinoids to bees including honey bees, bumble bees and solitary bees. The focus of the paper is on three different key aspects determining the risks of neonicotinoid field concentrations for bee populations: (1) the environmental neonicotinoid residue levels in plants, bees and bee products in relation to pesticide application, (2) the reported side-effects with special attention for sublethal effects, and (3) the usefulness for the evaluation of neonicotinoids of an already existing risk assessment scheme for systemic compounds. Although environmental residue levels of neonicotinoids were found to be lower than acute/chronic toxicity levels, there is still a lack of reliable data as most analyses were conducted near the detection limit and for only few crops. Many laboratory studies described lethal and sublethal effects of neonicotinoids on the foraging behavior, and learning and memory abilities of bees, while no effects were observed in field studies at field-realistic dosages. The proposed risk assessment scheme for systemic compounds was shown to be applicable to assess the risk for side-effects of neonicotinoids as it considers the effect on different life stages and different levels of biological organization (organism versus colony). Future research studies should be conducted with field-realistic concentrations, relevant exposure and evaluation durations. Molecular markers may be used to improve risk assessment by a better understanding of the mode of action (interaction with receptors) of neonicotinoids in bees leading to the identification of environmentally safer compounds.
Organisms are able to control metal concentrations in certain tissues of their body to minimize damage of reactive forms of essential and nonessential metals and to control selective utilization of essential metals. These physiological aspects of organisms are not accounted for when assessing the risk of metals in the environment. The Critical Body Residue (CBR) approach relates toxicity to bioaccumulation and biomagnification and might at first sight provide a more accurate estimation of effects than the external concentration. When expressing CBRs on total internal concentrations, the capacity of organisms to sequester metals in forms that are not biologically reactive is neglected. The predictability of toxic effects will increase when knowledge on metal compartmentalization within the organisms' body is taken into account. Insight in metal compartmentalization sheds light on the different accumulation strategies organisms can follow upon metal exposure. Using a fractionation procedure to isolate metal-rich granules and tissue fragments from intracellular and cytosolic fractions, the internal compartmentalization of metals can be approximated. In this paper, current knowledge regarding metal compartmentalization in organisms is summarized, and metal fractions are identified that are indicators of toxicity. Guidance is provided on future improvement of models, such as the Biotic Ligand Model (BLM), for risk assessment of metal stress to biota.
Abstract-Metal-based nanoparticles (NPs) (e.g., silver, zinc oxide, titanium dioxide, iron oxide) are being widely used in the nanotechnology industry. Because of the release of particles from NP-containing products, it is likely that NPs will enter the soil compartment, especially through land application of sewage sludge derived from wastewater treatment. This review presents an overview of the literature dealing with the fate and effects of metal-based NPs in soil. In the environment, the characteristics of NPs (e.g., size, shape, surface charge) and soil (e.g., pH, ionic strength, organic matter, and clay content) will affect physical and chemical processes, resulting in NP dissolution, agglomeration, and aggregation. The behavior of NPs in soil will control their mobility and their bioavailability to soil organisms. Consequently, exposure characterization in ecotoxicological studies should obtain as much information as possible about dissolution, agglomeration, and aggregation processes. Comparing existing studies is a challenging task, because no standards exist for toxicity tests with NPs. In many cases, the reporting of associated characterization data is sparse, or missing, making it impossible to interpret and explain observed differences in results among studies. Environ. Toxicol. Chem.
Background Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle.ResultsWe applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster.ConclusionsThe expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3852-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.