Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.
MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
Purpose
To analyse the combined and updated results from the University of Michigan and University Medical Center Utrecht on normal tissue complication probability (NTCP) of the parotid gland one year after radiotherapy (RT) for head and neck (HN) cancer.
Materials and methods
222 prospectively analyzed patients with various HN malignancies were treated with conventional and intensity-modulated RT. Stimulated individual parotid gland flow rates were measured before RT and one year after RT using Lashley cups at both centers. A flow ratio <25% of pre-treatment was defined as a complication. The data were fitted to the Lyman-Kutcher-Burman (LKB) model.
Results
A total of 384 parotid glands (Michigan: 157; Utrecht: 227 glands) was available for analysis one year after RT. Combined NTCP analysis based on mean dose resulted in TD50 (uniform dose leading to 50% complication probability) of 39.9 Gy and m (steepness of the curve) of 0.40. The resulting NTCP curve had good qualitative agreement with the combined clinical data. Mean doses 25-30 Gy were associated with 17-26% NTCP.
Conclusions
A definite NTCP curve for parotid gland function one year after RT is presented based on mean dose. No threshold dose was observed and TD50 was equal to 40 Gy.
To quantify intrafractional motion to determine population-based radiotherapy treatment margins for head-and-neck tumors. Methods: Cine MR imaging was performed in 100 patients with head-and-neck cancer on a 3T scanner in a radiotherapy treatment setup. MR images were analyzed using deformable image registration (optical flow algorithm) and changes in tumor contour position were used to calculate the tumor motion. The tumor motion was used together with patient setup errors (450 patients) to calculate populationbased PTV margins. Results: Tumor motion was quantified in 84 patients (12/43/29 nasopharynx/oropharynx/larynx, 16 excluded). The mean maximum (95th percentile) tumor motion (swallowing excluded) was: 2.3 mm in superior, 2.4 mm in inferior, 1.8 mm in anterior and 1.7 mm in posterior direction. PTV margins were: 2.8 mm isotropic for nasopharyngeal tumors, 3.2 mm isotropic for oropharyngeal tumors and 4.3 mm in inferior-superior and 3.2 mm in anterior-posterior for laryngeal tumors, for our institution. Conclusions: Intrafractional head-and-neck tumor motion was quantified and population-based PTV margins were calculated. Although the average tumor motion was small (95th percentile motion <3.0 mm), tumor motion varied considerably between patients (0.1-12.0 mm). The intrafraction motion expanded the CTV-to-PTV with 1.7 mm for laryngeal tumors, 0.6 mm for oropharyngeal tumors and 0.2 mm for nasopharyngeal tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.