We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ± 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.