Wastewater management has been seen primarily as a technical and economic issue but it is now recognised that these are some of the elements in an array of other factors that affect sustainability of wastewater systems. Literature studies point out that municipal authorities have a general and long-standing tradition of using indicators in monitoring performance, reviewing progress and reporting the state of the environment as part of the regulatory enacted compliance. However, they have neglected other critical aspects of use of these indicators such as their input into the planning and decision making process. This research advocates for the use of sustainable indicators in a context based planning approach and the utilisation of Multi Criteria Decision Aid (MCDA) in a two step approach for comparative analysis and assessment of the sustainability of wastewater systems. The overall objective was to develop a methodology for wastewater systems selection and to produce a practical planning tool to aid in decision making for municipalities. Another objective was to provide recommendations for wastewater and sanitation management improvement in the case study area. The methodology consisted of comprehensive literature review, case study analysis, a review of the Decision Support Systems (DSS) in use and the development of the DSS for Gauteng Province. The full spectrum of viable wastewater or sanitation options was incorporated into the DSS. From the sustainability assessments carried out using Multi criteria decision analysis, one result showed that varying degrees of sustainability are obtainable with each treatment technology involved and decentralised technologies appear more sustainable. Based on the local context and indicators used in this research, the DSS results suggest that land treatment systems, stabilisation ponds and ecological treatment methods are more sustainable. One major finding from literature is that no technology is inherently sustainable on its own but is a function of the local context specifics. Since there is so much variation in social and economic needs within the areas; the overall results imply that a differential wastewater management approach should be employed with tailor made solutions resulting for each municipality or certain areas within a municipality.
In a semi-arid water scarce country like South Africa, the efficient use of limited water resources and measures to extend the service value of these resources is a prerequisite for achieving sustainable development. The conventional supply-sided management approach to water supply causes increased wastewater generation with accompanied increased pollution loads requiring higher levels of mitigation environmental pollution. Where disposal of wastewater treatment effluent takes place in rivers and natural water bodies, the lack of adequate natural compensating capacity of such water bodies typically result in severe ecological damage of the aquatic environment. With a shift of emphasis to a sustainable demand side management approach (as opposed to a supply side one), the avoidance of water wastage and high wastewater generation represents both resource conservation and environmental protection friendly approaches and contribute to overall sustainability. The integrated nature of water supply and wastewater management systems require an approach that considers these systems holistically. A new paradigm for water management is therefore needed to ensure that the issues of waste disposal and pollution are dealt with in a sustainable manner taking into account the emerging objectives of modern society for resource conservation and environmental protection.A balance therefore has to be found between the uses of additional fresh water resources as a means of satisfying en ever increasing water demand on the one hand and alternative unconventional resource exploration and employment, without the risk of depletion of natural available fresh water resource flow, irreversible harm to the environment and social and economic constraints.This paper explores wastewater and grey water reuse as unconventional resources in a qualitative manner within this balancing equation. It further proposes a methodology for deriving monetary indicator values for wastewater reuse by internalising negative environmental impacts. This is achieved through application of Lagrangian optimisation of the treatment plant production function (output distance function) for deriving marginal prices of contaminant removal and resulting avoided pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.