As the cellular prion protein (PrP(C)) has been implicated in carcinogenesis, we aimed to investigate the effects of cancer cell-specific PrP(C) overexpression from the invasion, metastasis, and apoptosis aspects, by performing cell motility assays, cell proliferation assays under anchorage-dependent and anchorage-independent conditions, and apoptosis evasion when subjected to multiple anti-cancer drugs. Overexpression of PrP(C) in LS 174T was achieved by stable transfection. PrP(C) overexpression was shown to increase cell proliferation in anchorage-dependent and anchorage-independent manners, as shown by more viable cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, more colonies formed in soft agar assay and increased resistance to anoikis in poly-2-hydroxyethyl methacrylate-coated surface. PrP(C) overexpression also increased cell motility and invasiveness of LS 174T. Cell adhesion to extracellular matrix using collagen- and fibronectin-coated surfaces revealed increased cell attachment in LS 174T cells overexpressing PrP(C). Analysis of apoptotic and necrotic cells by propidium iodide/annexin V-fluorescein isothiocyanate microscopy and 7-amino-actinomycin D/annexin V-phycoerythrin flow cytometry revealed that PrP(C) overexpression attenuated doxorubicin-induced apoptosis. Human apoptosis antibody array with 35 apoptosis-related proteins revealed that three inhibitor of apoptosis proteins (IAPs)-survivin, X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein-1 (cIAP-1)-were upregulated in LS 174T cells overexpressing PrP(C) in doxorubicin-induced apoptosis. In conclusion, the overexpression of PrP(C) could enhance the invasiveness and survival of LS 174T colorectal cancer cells, indicating that PrP(C) plays a role in colorectal cancer biology.
BackgroundTumor-induced angiogenesis is an imperative event in pledging new vasculature for tumor metastasis. Since overexpression of neuronal proteins gamma-synuclein (γ-Syn) and cellular prion protein (PrPC) is always detected in advanced stages of cancer diseases which involve metastasis, this study aimed to investigate whether γ-Syn or PrPC overexpression in colorectal adenocarcinoma, LS 174T cells affects angiogenesis of endothelial cells, EA.hy 926 (EA).MethodsEA cells were treated with conditioned media (CM) of LS 174T-γ-Syn or LS 174T-PrP, and their proliferation, invasion, migration, adhesion and ability to form angiogenic tubes were assessed using a range of biological assays. To investigate plausible background mechanisms in conferring the properties of EA cells above, nitrite oxide (NO) levels were measured and the expression of angiogenesis-related factors was assessed using a human angiogenesis antibody array.ResultsEA proliferation was significantly inhibited by LS 174T-PrP CM whereas its telomerase activity was reduced by CM of LS 174T-γ-Syn or LS 174T-PrP, as compared to EA incubated with LS 174T CM. Besides, LS 174T-γ-Syn CM or LS 174T-PrP CM inhibited EA invasion and migration in Boyden chamber assay. Furthermore, LS 174T-γ-Syn CM significantly inhibited EA migration in scratch wound assay. Gelatin zymography revealed reduced secretion of MMP-2 and MMP-9 by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM. In addition, cell adhesion assay showed lesser LS 174T-γ-Syn or LS 174T-PrP cells adhered onto EA, as compared to LS 174T. In tube formation assay, LS 174T-γ-Syn CM or LS 174T-PrP CM induced EA tube formation. Increased NO secretion by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM was also detected. Lastly, decreased expression of pro-angiogenic factors like CXCL16, IGFBP-2 and amphiregulin in LS 174T-γ-Syn CM or LS 174T-PrP CM was detected using the angiogenesis antibody array.DiscussionThese results suggest that overexpression of γ-Syn or PrPC could possibly be involved in colorectal cancer-induced angiogenesis by inducing an endothelial proliferation–differentiation switch. NO could be the main factor in governing this switch, and modulation on the secretion patterns of angiogenesis-related proteins could be the strategy of colorectal cancer cells overexpressing γ-Syn or PrPC in ensuring this transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.