Gene repair of CD34 hematopoietic stem and progenitor cells (HSPCs) may avoid problems associated with gene therapy, such as vector-related mutagenesis and dysregulated transgene expression. We used CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated 9) to repair a mutation in the CYBB gene of CD34 HSPCs from patients with the immunodeficiency disorder X-linked chronic granulomatous disease (X-CGD). Sequence-confirmed repair of >20% of HSPCs from X-CGD patients restored the function of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and superoxide radical production in myeloid cells differentiated from these progenitor cells in vitro. Transplant of gene-repaired X-CGD HSPCs into NOD (nonobese diabetic) SCID (severe combined immunodeficient) γc mice resulted in efficient engraftment and production of functional mature human myeloid and lymphoid cells for up to 5 months. Whole-exome sequencing detected no indels outside of the CYBB gene after gene correction. CRISPR-mediated gene editing of HSPCs may be applicable to other CGD mutations and other monogenic disorders of the hematopoietic system.
Natural killer (NK) cells hold promise for cancer therapy. NK cytotoxicity can be enhanced by expression of chimeric antigen receptors that re-direct specificity toward target cells by engaging cell surface molecules expressed on target cells. We developed a regulatory-compliant, scalable non-viral approach to engineer NK cells to be target-specific based on transfection of mRNA encoding chimeric receptors. Transfection of eGFP mRNA into ex vivo expanded NK cells (N ¼ 5) or purified unstimulated NK cells from peripheral blood (N ¼ 4) resulted in good cell viability with eGFP expression in 85 ± 6% and 86 ± 4%, 24 h after transfection, respectively. An mRNA encoding a receptor directed against CD19 (anti-CD19-BB-z) was also transfected into NK cells efficiently. Ex vivo expanded and purified unstimulated NK cells expressing anti-CD19-BB-z exhibited enhanced cytotoxicity against CD19 þ target cells resulting in X80% lysis of acute lymphoblastic leukemia and B-lineage chronic lymphocytic leukemia cells at effector target ratios lower than 10:1. The target-specific cytotoxicity for anti-CD19-BB-z mRNA-transfected NK cells was observed as early as 3 h after transfection and persisted for up to 3 days. The method described here should facilitate the clinical development of NK-based antigen-targeted immunotherapy for cancer. Cancer Gene Therapy ( IntroductionThe capacity of natural killer (NK) 1 cells to exert cytotoxicity against a variety of cancer cell types makes them an attractive tool for anti-cancer therapy. [2][3][4][5][6][7] Data gathered in the setting of allogeneic hematopoietic stem cell transplantation indicate that donor selection based on the degree of mismatch between expression of killer immunoglobulin-like receptors on donor NK cells and HLA Class I molecules expressed by the patient cells should maximize NK cell killing of target cells, 4,[8][9][10] hence augmenting the efficacy of hematopoietic stem cell transplantation. 6,7,11 In addition, it was reported that the infusion of haploidentical NK cells in a nonmyeloablative transplant setting could produce remissions in patients with acute myeloid leukemia. 5 Although NK cell cytotoxicity has a wide spectrum, some cancer cell types appear less susceptible or refractory to NK cell killing, because of failure to activate NK cells, induction of suppression or both. Among these relatively NKresistant cell types are lymphoid malignancies such as acute lymphoblastic leukemia (ALL), B-cell chronic lymphocytic leukemia (B-CLL) and B-cell non-Hodgkin lymphoma. 3,[12][13][14][15][16] Chimeric antigen receptor has been studied since late 1980s. [17][18][19][20][21][22] It generally contains a single chain variable fragment as the extracellular antigen recognition unit and multiple lymphocyte activation domains as the intracellular activation part. Most work has been focused in arming T cells with this chimeric antigen receptor for antitumor effect 21-23 NK cells transduced with chimeric antigen receptor have also been exploited for anti-tumor effect. Various com...
Risk factors for gastric cancer are receiving renewed attention in light of the recent positive association of Helicobacter pylori infection with gastric cancer. The effect of H.pylori on the balance between oxidants and antioxidants in the stomach is not well known. In this study, we investigated if exposure of gastric cells to H. pylori increases oxidant-associated gastric epithelial cell injury. A human gastric epithelial cell line (AGS) was grown on 96-well clusters, then exposed overnight to either live H.pylori (four cagA(+) and four cagA(-)) or broth culture supernatant from an isogenic H.pylori cagA(+) strain with and without vacA activity. Incubation of AGS cells with cagA(+) and cagA(-) H.pylori strains before exposure to reactive oxygen species (ROS) reduced cell viability on average to 73.7% and 39.5% of controls, respectively. The percent viability of cells exposed to ROS after incubation with control broth, vacA(-) broth and vacA(+) broth was 97.7%, 70.5% and 63.5%, respectively. Experiments were then performed to evaluate the effects of H.pylori exposure on the activities of ROS-scavenging enzymes [catalase, glutathione peroxidase and superoxide dismutase (SOD)] and formation of 8-hydroxy-2-deoxyguanosine (8-OH-dG) adducts in AGS cells. Overnight exposure to cagA(-) strains reduced catalase activity by 42%; in contrast, exposure to cagA(+) H.pylori strains increased catalase activity by 51%. Glutathione peroxidase activity increased with exposure to both cagA(-) and cagA(+) strains by 95% and 240%, respectively. Total SOD activity increased 156% after exposure to cagA(+) strains and was marginally increased (52%) with exposure to cagA(-) strains. CuZn-SOD protein levels, assayed by enzyme-linked immunosorbent assay, were not significantly altered by exposure to H.pylori strains; however, Mn-SOD concentrations were significantly increased (P: < 0.02) after exposure to both cagA(-) and cagA(+) H.pylori strains. Exposure of AGS cells to cagA(+) and cagA(-) H.pylori was associated with, on average, 44.5 and 99.0 8-OH-dG/10(6) dG, respectively. The increase in catalase, glutathione peroxidase and SOD activity is associated with fewer 8-OH-dG DNA adducts and reduced susceptibility of AGS cells to lethal injury from ROS after exposure to cagA(+) H.pylori strains when compared with exposure to cagA(-) H.pylori strains. Alteration in the activity of ROS-scavenging enzymes by the presence of H. pylori may in part be responsible for the increased risk of gastric cancer in persons infected with H.pylori.
CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival. No significant off-target toxicities were observed. These data support further investigation of CARMA-hMeso as a potential treatment for ovarian cancer and other mesothelin-expressing cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.