DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally employed long (400–800 bp) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intra-species genetic variation. We report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterise four million SNPs and four hundred thousand structural variants, many of which are previously unknown. Our approach is effective for accurate, rapid and economical whole genome re-sequencing and many other biomedical applications.
Factors contributing to retroviral integration have been intractable because past studies have not precisely located genomic sites of proviruses in sufficient numbers for significant analysis. In this study, 903 murine leukemia virus (MLV) and 379 human immunodeficiency virus-1 (HIV-1) integrations in the human genome were mapped. The data showed that MLV preferred integration near the start of transcriptional units (either upstream or downstream) whereas HIV-1 preferred integration anywhere in the transcriptional unit but not upstream of the transcriptional start. Defining different integration site preferences for retroviruses will have important ramifications for gene therapy and may aid in our understanding of the factors directing the integration process.
The persistence of HIV-Infected cells in individuals on suppressive combination antiretroviral therapy (cART) presents a major barrier for curing HIV infections. HIV integrates its DNA into many sites in the host genome; we identified 2410 integration sites in peripheral blood lymphocytes of five infected individuals on cART. About 40% of the integrations were in clonally expanded cells. Approximately 50% of the infected cells in one patient were from a single clone and some clones persisted for many years. There were multiple independent integrations in several genes, including MKL2 and BACH2; many of these integrations were in clonally expanded cells. Our findings show that HIV integration sites can play a critical role in expansion and persistence of HIV infected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.