Estimating the fraction of cancer cells with individual somatic mutations is central to many analyses in cancer genomics, including characterisation of clonal architecture and timing of mutational events. Estimation of these cancer cell fractions (CCFs) is contingent on unbiased assessment of the fraction of reads supporting variant alleles (VAFs). We demonstrate that VAFs computed by the Illumina Isaac pipeline, used in many large-scale sequencing projects includingThe 100,000 Genomes Project, are biased by the preferential soft clipping of reads supporting non-reference alleles (semi-aligned reads). We show that these biased VAFs can have deleterious effects on downstream analyses reliant on unbiased CCF estimates. While Isaac bias can be corrected through realignment with alternative parameters, this is computationally intensive. We therefore developed FixVAF, a tool for removing bias introduced by soft clipping of semi-aligned reads, facilitating downstream analyses without the need for realignment. FixVAF is freely available at https://github.com/danchubb/FixVAF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.