Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca2+-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca2+ from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (τexocytosis = 0.24 ± 0.017 s; τendocytosis = 0.26 ± 0.03 s) and (2) exocytosis is controlled by local Ca2+ microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, ∼50 ms) Ca2+ events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.
In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.
Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three‐dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug‐ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. J. Comp. Neurol. 524:23–38, 2016. © 2015 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.