At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the = 800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.
Choroidal melanoma (CM), despite its rarity, is the most frequent intraocular malignancy. Over time, several histological variants of CM have been distinguished, including spindle A and B cell, fascicular, epithelioid and necrotic type. However, they have been progressively abandoned as having no prognostic value and currently, the American Joint Committee of Cancer (AJCC) classification identifies three CM cell types: spindle, epithelioid and mixed cell type. Other rare histological variants of CM include: (i) diffuse melanoma; (ii) clear cell; and (iii) balloon cell melanoma. Immunohistochemically, CMs are stained with Human Melanoma Black 45 (HMB45) antigen, S-100 protein, Melan-A (also known as melanoma antigen recognized by T cells 1/MART-1), melanocyte inducing transcription factor (MITF), tyrosinase, vimentin, and Sex determining region Y-Box 10 (SOX10). Several genetic and histopathological prognostic factors of CM have been reported in the literature, including epithelioid cell type, TNM staging, extraocular extension, monosomy 3 and 6p gain and loss of BAP-1 gene. The aim of this review was to summarize the histopathological, immunohistochemical and genetic features of CM, establishing “the state of the art” and providing colleagues with practical tools to promptly deal with patients affected by this rare malignant neoplasm.
Purposeto investigate the added value of qualitative and quantitative evaluation of diffusion weighted (DW) magnetic resonance (MR) imaging in response assessment after neoadjuvant chemo-radiotherapy (CRT) in patients with locally advanced rectal cancer (LARC).Methods31 patients with LARC (stage ≥ T3) were enrolled in the study. All patients underwent conventional MRI and DWI before starting therapy and after neoadjuvant CRT. All patients underwent surgery; pathologic staging represented the reference standard. For qualitative analysis, two radiologists retrospectively reviewed conventional MR images and the combined set of conventional and DW MR images and recorded their confidence level with respect to complete response (ypCR). For quantitative analysis, tumor’s apparent diffusion coefficient (ADC) values were measured at each examination. ADC pre-CRT, ADC post-CRT and Δ ADC post−ADC pre of the three groups of response (ypCR, partial response ypPR, stable disease ypSD) were compared. Receiver-operating characteristics (ROC) curve analysis was employed to investigate the discriminatory capability for ypCR, responders (ypCR, ypPR) and ypSD of each measure.Resultsaddition of DWI to conventional T2-weighted sequences improved diagnostic performance of MRI in the evaluation of ypCR. A low tumor ADC value in the pre-CRT examination, a high ADC value in the post-CRT examination, a high Δ ADC post−ADC pre [>0.3 (×10−3 mm2/s)] were predictive of ypCR.ConclusionsDW sequences improve MR capability to evaluate tumor response to CRT. Nevertheless, no functional MR technique alone seems accurate enough to safely select patients with ypCR.
In ocular melanoma treated with PBT, ADC variations precede volume changes. Both pretreatment ADC and early change in ADC value may predict treatment response, thus expanding the role of DWI from diagnostic to prognostic.
After 10 years of activity, about 300 patients have been treated at the CATANA Eye Protontherapy facility. A 62 MeV proton beam produced by a Superconducting Cyclotron is dedicated to radiotherapy of eye lesions, as uveal melanomas. Research and development work has been done to test different dosimetry devices to be used for reference and relative dosimetry, in order to achieve dose delivering accuracy. The follow-up results on 220 demonstrated the efficacy of proton beams and encouraged us in our activity in the fight against cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.