a b s t r a c tThis paper presents an assessment of the value added of a Monte Carlo analysis of the uncertainties in the Netherlands inventory of greenhouse gases over a Tier 1 analysis. It also examines which parameters contributed the most to the total emission uncertainty and identified areas of high priority for the further improvement of the accuracy and quality of the inventory. The Monte Carlo analysis resulted in an uncertainty range in total GHG emissions of 4.1% in 2004 and 5.4% in 1990 (with LUCF) and 5.3% (in 1990) and 3.9% (in 2004) for GHG emissions without LUCF. Uncertainty in the trend was estimated at 4.5%. The values are in the same order of magnitude as those estimated in the Tier 1. The results show that accounting for correlation among parameters is important, and for the Netherlands inventory it has a larger impact on the uncertainty in the trend than on the uncertainty in the total GHG emissions. The main contributors to overall uncertainty are found to be related to N 2 O emissions from agricultural soils, the N 2 O implied emission factors of Nitric Acid Production, CH 4 from managed solid waste disposal on land, and the implied emission factor of CH 4 from manure management from cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.