Although aquaporins have been known to transport hydrogen peroxide (H(2)O(2)) across cell membranes, the H(2)O(2)-regulated expression patterns and the permeability of every family member of the plasma membrane intrinsic protein (PIP) toward H(2)O(2) have not been determined. This study investigates the H(2)O(2)-regulated expression levels of all plasma membrane aquaporins of Arabidopsis thaliana (AtPIPs), and determines the permeability of every AtPIP for H(2)O(2) in yeast. Hydrogen peroxide treatment of Arabidopsis down-regulated the expression of AtPIP2 subfamily in roots but not in leaves, whereas the expression of AtPIP1 subfamily was not affected by H(2)O(2) treatment. The growth and survival of yeast cells that expressed AtPIP2;2, AtPIP2;4, AtPIP2;5, or AtPIP2;7 was reduced in the presence of H(2)O(2), while the growth of yeast cells expressing any other AtPIP family member was not affected by H(2)O(2). These results show that only certain isoforms of AtPIPs whose expression is regulated by H(2)O(2) treatment are permeable for H(2)O(2) in yeast cells, and suggest that the integrated regulation of aquaporin expression by H(2)O(2) and the capacity of individual aquaporin to transport H(2)O(2) are important for plant response to H(2)O(2).
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, b-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wildtype plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrateprotein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.
Monoclea forsteri Hook. is a thalloid liverwort species that is found in damp habitats and can, therefore, be expected to be sensitive to dehydration. It does, however, have some unique chemical constituents and anatomical features that could play a role in dealing with the adverse effects of water deficits. Corresponding to the habitat, M. forsteri lost its turgor at high relative water content (RWC<0.90) and did not survive drying below 20% RWC. Moreover, the gametophytes showed an increase in malondialdehyde content and a depletion of the ascorbate pool during dehydration, indicating oxidative damage. Cellular constituents did not affect turgor pressure during drying and electrolyte leakage from the cells was greatly increased at RWC,0.20. Photosynthetic processes seemed not to be affected by the loss of turgor, but a decline appeared to correlate with an increase in electrolyte leakage. A speedy and fully sustained recovery from dehydration was realized from water contents above 30% and seemed only to be possible if membrane integrity could be preserved. Anatomical characteristics within M. forsteri gametophytes deserve further investigation to better understand their physiological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.