Tri-n-butyl phosphate (TBP) is an important extractant used in the solvent extraction process for recovering uranium and plutonium from used nuclear fuel. An atomistic molecular dynamics study was used to understand the fundamental molecular-level behavior of extracting agents in solution. Atomistic parametrization was carried out using the AMBER force field to model the TBP molecule and n-dodecane molecule, a commonly used organic solvent. Validation of the optimized force field was accomplished through various thermophysical properties of pure TBP and pure n-dodecane in the bulk liquid phase. The mass density, dipole moment, self-diffusion coefficient, and heat of vaporization were calculated from our simulations and compared favorably with experimental values. The molecular structure of TBPs in n-dodecane at a dilute TBP concentration was examined based on radial distribution functions. 1D and 2D potential mean force studies were carried out to establish the criteria for identifying TBP aggregates. The dimerization constant of TBP in the TBP/n-dodecane mixture was also obtained and matched the experimental value.
The water soluble tetradentate Schiff base, N,N 0 -bis(5-sulfonatosalicylidene)-diaminoethane (H 2 salen-SO 3 ), will readily coordinate to the uranyl(VI) cation, but not to the same extent to trivalent lanthanide cations. This allows for the reversal of conventional solvent extraction properties and opens the possibility for novel separation processes.
Conventional solvent extraction of neptunyl(v), Cm(iii), Eu(iii) & uranyl(vi) by bis(2-ethylhexylphosphoric acid (HDEHP) can be altered through introduction of an actinyl selective hold-back complexant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.