Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy, and yet many physicians do not know about this high risk of sudden death. It has been widely believed that SUDEP is due to cardiac abnormalities during the post-ictal period. However, recent studies have demonstrated that respiratory depression is common following a seizure, and can be severe enough to cause a substantial decrease in oxygen saturation. In this review we summarize evidence for cardiac, respiratory, and arousal abnormalities during the ictal and post-ictal period and potential mechanisms for these abnormalities. We discuss mouse models of seizure-induced death and how these models are useful for understanding the mechanisms that underlie SUDEP. Some of these are due to genetic mutations that have counterparts in human syndromes. Controversy remains regarding the relative importance of cardiac failure versus respiratory arrest as the primary cause of death. Resolving this controversy will require simultaneous monitoring of cardiac and respiratory parameters during cases of near SUDEP in humans and detailed pathophysiological data from animal models during seizure-induced death. Effective preventive strategies in high-risk patients will rely on defining the mechanisms that initiate the sequence of events that lead from seizures to death.
Serotonin (5-hydroxytryptamine; 5-HT) neurons are widely considered to play an important role in central respiratory chemoreception. Although many studies in the past decades have supported this hypothesis, there had been concerns about its validity until recently. One recurring claim had been that 5-HT neurons are not consistently sensitive to hypercapnia in vivo. Another belief was that 5-HT neurons do not stimulate breathing; instead, they inhibit or modulate respiratory output. It was also believed by some that 5-HT neuron chemosensitivity is dependent on TASK channels, but mice with genetic deletion of TASK-1 & TASK-3 have a normal hypercapnic ventilatory response (HCVR). This review explains why these principal arguments against the hypothesis are not supported by existing data. Despite repeated challenges, a large body of evidence now supports the conclusion that at least a subset of 5-HT neurons are central chemoreceptors.
Sudden unexplained death in epilepsy (SUDEP) is the cause of premature death of up to 17% of all patients with epilepsy and as many as 50% with chronic refractory epilepsy. However, SUDEP is not widely recognized to exist. The etiology of SUDEP remains unclear, but growing evidence points to peri-ictal respiratory, cardiac, or autonomic nervous system dysfunction. How seizures affect these systems remains uncertain. Here we focus on respiratory mechanisms believed to underlie SUDEP. We highlight clinical evidence that indicates peri-ictal hypoxemia occurs in a large percentage of patients due to central apnea, and identify the proposed anatomical regions of the brain governing these responses. In addition, we discuss animal models used to study peri-ictal respiratory depression. We highlight the role 5-HT neurons play in respiratory control, chemoreception, and arousal. Finally, we discuss the evidence that 5-HT deficits contribute to SUDEP and sudden infant death syndrome and the striking similarities between the two.
Serotonin (5-hydroxytryptamine, 5-HT) neurons from the mouse and rat rostral medulla are stimulated by increased CO2 when studied in culture or brain slices. However, the response of 5-HT neurons has been variable when animals are exposed to hypercapnia in vivo. Here we examined whether halogenated inhalational anesthetics, which activate TWIK-related acid-sensitive K(+) (TASK) channels, could mask an effect of CO2 on 5-HT neurons. During in vivo plethysmography in mice, isoflurane (1%) markedly reduced the hypercapnic ventilatory response (HCVR) by 78-96% depending upon mouse strain and ambient temperature. In a perfused rat brain stem preparation, isoflurane (1%) reduced or silenced spontaneous firing of medullary 5-HT neurons in situ and abolished their responses to elevated perfusate Pco2. In dissociated cell cultures, isoflurane (1%) hyperpolarized 5-HT neurons by 6.52 ± 3.94 mV and inhibited spontaneous firing. A subsequent decrease in pH from 7.4 to 7.2 depolarized neurons by 4.07 ± 2.10 mV, but that was insufficient to reach threshold for firing. Depolarizing current restored baseline firing and the firing frequency response to acidosis, indicating that isoflurane did not block the underlying mechanisms mediating chemosensitivity. These results demonstrate that isoflurane masks 5-HT neuron chemosensitivity in vitro and in situ and markedly decreases the HCVR in vivo. The use of this class of anesthetic has a particularly potent inhibitory effect on chemosensitivity of 5-HT neurons.
Anesthetics are widely used for animal research on respiratory control in vivo, but their effect on breathing and CO chemoreception has not been well characterized in mice, a species now often used for these studies. We previously demonstrated that 1% isoflurane markedly reduces the hypercapnic ventilatory response (HCVR) in adult mice in vivo and masks serotonin [5-hydroxytryptamine (5-HT)] neuron chemosensitivity in vitro. Here we investigated effects of 0.5% isoflurane on breathing in adult mice and also found a large reduction in the HCVR even at this subanesthetic concentration. We then tested the effects on breathing of ketamine-xylazine and urethane, anesthetics widely used in research on breathing. We found that these agents altered baseline breathing and blunted the HCVR at doses within the range typically used experimentally. At lower doses ventilation was decreased, but mice appropriately matched their ventilation to metabolic demands due to a parallel decrease in O consumption. Neither ketamine nor urethane decreased chemosensitivity of 5-HT neurons. These results indicate that baseline breathing and/or CO chemoreception in mice are decreased by anesthetics widely viewed as not affecting respiratory control, and even at subtherapeutic doses. These effects of anesthetics on breathing may alter the interpretation of studies of respiratory physiology in vivo. Anesthetics are frequently used in animal research, but their effects on physiological functions in mice have not been well defined. Here we investigated the effects of commonly used anesthetics on breathing in mice. We found that all tested anesthetics significantly reduced the hypercapnic ventilatory response (HCVR), even at subtherapeutic doses. In addition, ketamine-xylazine and urethane anesthesia altered baseline breathing. These data indicate that breathing and the HCVR in mice are highly sensitive to anesthetic modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.