The proto-oncogenes c-fos and c-jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a heterodimeric complex that interacts with the DNA regulatory element known as the activator protein-1 (AP-1) binding site. Dimerization occurs via interaction between leucine zipper domains and serves to bring into proper juxtaposition a region in each protein that is rich in basic amino acids and that forms a DNA-binding domain. DNA binding of the Fos-Jun heterodimer was modulated by reduction-oxidation (redox) of a single conserved cysteine residue in the DNA-binding domains of the two proteins. Furthermore, a nuclear protein was identified that reduced Fos and Jun and stimulated DNA-binding activity in vitro. These results suggest that transcriptional activity mediated by AP-1 binding factors may be regulated by a redox mechanism.
The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.
Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus-and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosyntheticafly labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.The product of protooncogene c-fos is implicated in cell proliferation (1-4), differentiation (5), and development (6)(7)(8). To ensure proper expression during these processes, it is subjected to tight regulation at multiple levels. The c-fos gene undergoes rapid and transient transcriptional activation in response to a variety of extracellular stimuli in various cell types (9, 10). The protein synthesis-independent induction is mediated mainly through the serum response element (11), which binds a protein complex composed of a homodimer of serum response factor and p62TCF (12-18). Interestingly, the repression of c-fos gene expression following its activation may also be mediated through the serum response element (19) and the newly synthesized c-Fos protein plays a role in repression of its own promoter (20)(21)(22). The transforming v-Fos protein, which is truncated at the C terminus with five additional point mutations (23), is defective in the transrepression activity (24,25). Upon serum stimulation, c-Fos is more extensively phosphorylated than v-Fos, due to this C-terminal region (23,(25)(26)(27)(28). Phosphorylation of the C terminus has been shown to be responsible for the transrepression activity (29,30), and truncation or mutations that block phosphorylation in this region enhance the transforming capacity of c-Fos (30).c-fos gene induction correlates with the agonist-dependent activation of the mitogen-activated protein kinase (MAP kinase)/90-kDa ribosomal S6 kinase (RSK) signal transduction pathway (31-33). In addition, both kinases are nuclear and cytoplasmic (34), which may be a prerequisite for their participation in regulation ofgene expression. Although MAP The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "adverti...
Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.
This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N-and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N-or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.