To investigate synoptic interactions with the San Andres Mountains in southern New Mexico, the Weather Research and Forecasting (WRF) model was used to simulate several days in the period 2018–2020. The study domain was centered on the U.S. Department of Agriculture (USDA) Agricultural Research Service’s Jornada Experimental Range (JER) and the emphasis was on synoptic conditions that favor strong to moderate winds aloft from the southwest, boundary layer shear, a lack of moisture (cloud coverage), and modest warming of the surface. The WRF simulations on these synoptic days revealed two distinct regimes: lee waves aloft and SW-to-NE oriented Longitudinal Roll Structures (LRS) that have typical length scales of the width of the mountain basin in the horizontal and the height of the boundary layer (BL) in the vertical. Analysis of the transitional periods indicate that the shift from the lee wave to LRS regime occurs when the surface heating and upwind flow characteristics reach a critical threshold. The existence of LRS is confirmed by satellite observations and the longitudinal streak patterns in the soil of the JER that indicate this is a climatologically present BL phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.