A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned 1 H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 Å with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection.
Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by C andNa solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Au are observed. Na NMR experiments show that Na ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.