Identifying the viral epitopes targeted by broad neutralizing antibodies (NAbs) that sometimes develop in human immunodeficiency virus type 1 (HIV-1)-infected subjects should assist in the design of vaccines to elicit similar responses. Here, we investigated the activities of a panel of 24 broadly neutralizing plasmas from subtype B-and C-infected donors using a series of complementary mapping methods, focusing mostly on JR-FL as a prototype subtype B primary isolate. Adsorption with gp120 immobilized on beads revealed that an often large but variable fraction of plasma neutralization was directed to gp120 and that in some cases, neutralization was largely mediated by CD4 binding site (CD4bs) Abs. The results of a native polyacrylamide gel electrophoresis assay using JR-FL trimers further suggested that half of the subtype B and a smaller fraction of subtype C plasmas contained a significant proportion of NAbs directed to the CD4bs. Anti-gp41 neutralizing activity was detected in several plasmas of both subtypes, but in all but one case, constituted only a minor fraction of the overall neutralization activity. Assessment of the activities of the subtype B plasmas against chimeric HIV-2 viruses bearing various fragments of the membrane proximal external region (MPER) of HIV-1 gp41 revealed mixed patterns, implying that MPER neutralization was not dominated by any single specificity akin to known MPER-specific monoclonal Abs. V3 and 2G12-like NAbs appeared to make little or no contribution to JR-FL neutralization titers. Overall, we observed significant titers of anti-CD4bs NAbs in several plasmas, but approximately two-thirds of the neutralizing activity remained undefined, suggesting the existence of NAbs with specificities unlike any characterized to date.
BackgroundBroad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely.ResultsTo meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment.Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers.ConclusionsSharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at http://www.labkey.org. Documentation and source code are available under the Apache License 2.0.
We report the development of a completely automated pipeline to monitor system suitability in bottom-up proteomic experiments. LC MS/MS runs are automatically imported into Skyline and multiple identification free metrics are extracted from targeted peptides. These data are then uploaded to the Panorama Skyline document repository where metrics can be viewed in a web based interface using powerful process control techniques, including Levey-Jennings and Pareto plots. The interface is versatile and takes user input which allows the user significant control over the visualization of the data. The pipeline is vendor and instrument type neutral, supports multiple acquisition techniques (e.g. MS 1 filtering, data independent acquisition, parallel reaction monitoring, and selected reaction monitoring), can track performance of multiple instruments, and requires no manual intervention aside from initial setup. Data can be viewed from any computer with internet access and a web browser -- facilitating sharing of QC data between researchers. Herein we describe the use of this pipeline, termed Panorama AutoQC, to evaluate LC MS/MS performance in a range of scenarios from identification of suboptimal instrument performance, evaluation of ultra-high pressure chromatography, to the identification of the major sources of variation throughout years of peptide data collection.
BackgroundImmunoassays that employ multiplexed bead arrays produce high information content per sample. Such assays are now frequently used to evaluate humoral responses in clinical trials. Integrated software is needed for the analysis, quality control, and secure sharing of the high volume of data produced by such multiplexed assays. Software that facilitates data exchange and provides flexibility to perform customized analyses (including multiple curve fits and visualizations of assay performance over time) could increase scientists’ capacity to use these immunoassays to evaluate human clinical trials.ResultsThe HIV Vaccine Trials Network and the Statistical Center for HIV/AIDS Research and Prevention collaborated with LabKey Software to enhance the open source LabKey Server platform to facilitate workflows for multiplexed bead assays. This system now supports the management, analysis, quality control, and secure sharing of data from multiplexed immunoassays that leverage Luminex xMAP® technology. These assays may be custom or kit-based. Newly added features enable labs to: (i) import run data from spreadsheets output by Bio-Plex Manager™ software; (ii) customize data processing, curve fits, and algorithms through scripts written in common languages, such as R; (iii) select script-defined calculation options through a graphical user interface; (iv) collect custom metadata for each titration, analyte, run and batch of runs; (v) calculate dose–response curves for titrations; (vi) interpolate unknown concentrations from curves for titrated standards; (vii) flag run data for exclusion from analysis; (viii) track quality control metrics across runs using Levey-Jennings plots; and (ix) automatically flag outliers based on expected values. Existing system features allow researchers to analyze, integrate, visualize, export and securely share their data, as well as to construct custom user interfaces and workflows.ConclusionsUnlike other tools tailored for Luminex immunoassays, LabKey Server allows labs to customize their Luminex analyses using scripting while still presenting users with a single, graphical interface for processing and analyzing data. The LabKey Server system also stands out among Luminex tools for enabling smooth, secure transfer of data, quality control information, and analyses between collaborators. LabKey Server and its Luminex features are freely available as open source software at http://www.labkey.com under the Apache 2.0 license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.