Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase (B-GAL) or β-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-D: -glucuronide sodium salt (XG), chlorophenol red β-galactopyranoside (CPRG) or both and FeCl(3) were entrapped using sol-gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl(3) zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.
Bacterially produced secondary metabolites are used as antibiotics, anticancer drugs, and for many other medicinal applications. The mechanisms that limit the production of these molecules in the laboratory are not well understood, and this has impeded the discovery of many important compounds. We have identified small molecules that remodel the yields of secondary metabolites in many actinomycetes and show that one set of these molecules does so by inhibiting fatty acid biosynthesis. This demonstrates a particularly intimate relationship between this primary metabolic pathway and secondary metabolism and suggests an approach to enhance the yields of metabolites for discovery and biochemical characterization.
Palladium complexes incorporating ligands based on a 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantanyl scaffold were used to catalyze the arylation of ethyl cyanoacetate, malononitrile, and various ketones. The products from these reactions can be elaborated to substituted β-arylethylamines and used in microwave-assisted Pictet-Spengler reactions. The protocol developed is suitable for the synthesis of libraries of substituted isoquinolines.
Background Uterine rupture due to a morbidly adherent placenta is a rare obstetrical cause of acute abdominal pain in the pregnant patient. We present a case to add to the small body of published literature describing this diagnosis. Case A 32-year-old G5T2P1A1L2 with multiple prior cesarean sections presented at 21+3 weeks' gestation with abdominal pain and presyncope. Ultrasound showed a large volume of complex intraabdominal free fluid and a heterogenous placenta with irregular lacunae and increased vascularity extending to the posterior bladder wall. Exploratory laparotomy identified a uterine defect and a hysterectomy was performed due to significant bleeding. Pathology confirmed a diagnosis of placenta percreta. Conclusion Early recognition and management of uterine rupture due to a morbidly adherent placenta are essential to prevent catastrophic hemorrhage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.