We demonstrate a 650 mW 243 nm continuous-wave laser coupled to a linear optical enhancement cavity. The enhancement cavity can maintain >30 W of intracavity power for 1 h of continuous operation without degradation. This system has sufficient power for a demonstration of two-photon laser cooling of hydrogen and may be useful for experiments on other simple two-body atomic systems.
Precision spectroscopy of hydrogen often relies on effusive thermal atomic beams, and the uncertainty in the velocity distribution of these beams can introduce systematic errors and complicate lineshape models. Here, we present an apparatus capable of high signal-to-noise studies of these velocity distributions at cryogenic temperatures for both ground state (1S) and metastable (2S) hydrogen using a simple time-of-flight technique. We also investigate how the cryogenic nozzle geometry affects these results.
We present a Lyman-α laser developed for cooling trapped antihydrogen. The system is based on a pulsed Ti:sapphire laser operating at 729 nm that is frequency doubled using an LBO crystal and then frequency tripled in a Kr/Ar gas cell. After frequency conversion, this system produces up to 5.7 μW of average power at the Lyman-α wavelength. This laser is part of the ATRAP experiment at the antiproton decelerator in CERN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.