The risk of financial positions is measured by the minimum amount of capital to raise and invest in eligible portfolios of traded assets in order to meet a prescribed acceptability constraint. We investigate nondegeneracy, finiteness and continuity properties of these risk measures with respect to multiple eligible assets. Our finiteness and continuity results highlight the interplay between the acceptance set and the class of eligible portfolios. We present a simple, alternative approach to the dual representation of convex risk measures by directly applying to the acceptance set the external characterization of closed, convex sets. We prove that risk measures are nondegenerate if and only if the pricing functional admits a positive extension which is a supporting functional for the underlying acceptance set, and provide a characterization of when such extensions exist. Finally, we discuss applications to set-valued risk measures, superhedging with shortfall risk, and optimal risk sharing.
We discuss risk measures representing the minimum amount of capital a financial institution needs to raise and invest in a pre-specified eligible asset to ensure it is adequately capitalized. Most of the literature has focused on cash-additive risk measures, for which the eligible asset is a risk-free bond, on the grounds that the general case can be reduced to the cash-additive case by a change of numéraire. However, discounting does not work in all financially relevant situations, typically when the eligible asset is a defaultable bond. In this paper we fill this gap allowing for general eligible assets. We provide a variety of finiteness and continuity results for the corresponding risk measures and apply them to risk measures based on Value-at-Risk and Tail Value-at-Risk on L p spaces, as well as to shortfall risk measures on Orlicz spaces. We pay special attention to the property of cash subadditivity, which has been recently proposed as an alternative to cash additivity to deal with defaultable bonds. For important examples, we provide characterizations of cash subadditivity and show that, when the eligible asset is a defaultable bond, cash subadditivity is the exception rather than the rule. Finally, we consider the situation where the eligible asset is not liquidly traded and the pricing rule is no longer linear. We establish when the resulting risk measures are quasiconvex and show that cash subadditivity is only compatible with continuous pricing rules.
We study capital requirements for bounded financial positions defined as the minimum amount of capital to invest in a chosen eligible asset targeting a pre-specified acceptability test. We allow for general acceptance sets and general eligible assets, including defaultable bonds. Since the payoff of these assets is not necessarily bounded away from zero the resulting risk measures cannot be transformed into cash-additive risk measures by a change of numeraire. However, extending the range of eligible assets is important because, as exemplified by the recent financial crisis, assuming the existence of default-free bonds may be unrealistic. We focus on finiteness and continuity properties of these general risk measures. As an application, we discuss capital requirements based on Value-at-Risk and TailValue-at-Risk acceptability, the two most important acceptability criteria in practice. Finally, we prove that there is no optimal choice of the eligible asset. Our results and our examples show that a theory of capital requirements allowing for general eligible assets is richer than the standard theory of cash-additive risk measures.
Any solvency regime for financial institutions should be aligned with the fundamental objectives of regulation: protecting liability holders and securing the stability of the financial system. The first objective leads to consider surplus-invariant capital adequacy tests, i.e. tests that do not depend on the surplus of a financial institution. We provide a complete characterization of closed, convex, surplus-invariant capital adequacy tests that highlights an inherent tension between surplusinvariance and the desire to give credit for diversification. The second objective leads to requiring consistency of capital adequacy tests across jurisdictions. Of particular importance in this respect are capital adequacy tests that remain invariant under a change of numéraire. We establish an intimate link between surplus-and numéraire invariant tests. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.