Abstract. In this paper we propose a comparative study of Artificial Neural Networks (ANN) and Artificial Immune Systems. Artificial Immune Systems (AIS) represent a novel paradigm in the field of computational intelligence based on the mechanisms that allow vertebrate immune systems to face attacks from foreign agents (called antigens). Several similarities as well as differences have been shown by Dasgupta in [1]. Here we present a comparative study of these two approaches considering evolutions of the concepts of ANN and AIS, respectively hybrid neural systems, Artificial Immune Recognition Systems (AIRS) and aiNet. We tried to establish a comparison among these three methods using a well known dataset, namely the Wisconsin Breast Cancer Database. We observed interesting trends in systems' performances and capabilities. Peculiarities of these systems have been analyzed, possible strength points and ideal contexts of application suggested. These and other considerations will be addressed in the rest of this manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.