In order to be competitive, it is demanded to have thin, tough and long lasting coatings. An important aspect is to use stable deposition technologies. As Cr assures wear, corrosion and high temperature resistance, the most employed coatings in industry generally contain Cr. Nevertheless, Cr is a hazardous element for the humans’ health, therefore, sustainable alternatives are needed to be implemented. The aim of this work is to investigate the microstructure, hardness, corrosion resistance and wear behavior of the novel WC-CoMo compared to conventional WC-Co coatings. So far, WC-CoMo coatings are not part of state of the art regarding the Atmospheric Plasma Sprayed (APS) coatings. WC-Co powder in plain form and mechanically mixed with Mo was deposited using the APS method on standardized Type A Almen Strips (C67 steel). The size of the powder grains varies between 5 µm and 30 µm. The obtained samples were investigated by means of Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction, and hardness, wear and corrosion behavior were also evaluated. Results revealed formation of different intermetallic phases around the WC particles, which have a benefic influence on the coating characteristics and microstructure.
Metallic bipolar plates have the advantages of better manufacturability, higher strength over graphite bipolar plates. The higher strength and toughness of the metallic materials permits the reduction of the width of the bipolar plate so, the volume and mass of the fuel cell can also be reduced. In this paper we are investigating the use of Ni-based amorphous material as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). The major requirements of the metallic bipolar plate material are low weight, high corrosion and low contact resistance. The corrosion property of the present alloy has been investigated under conditions that simulate the fuel cell environment. Hydrogen gas and air were bubbled into a 1 N H2SO4solution at 70 °C, throughout the experiment to simulate the respective anodic and cathodic PEMFC environment. The Ni-base amorphous alloys displayed higher corrosion resistance than stainless steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.